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Executive Summary 

l.Ö Purpose 

This report describes the Joint Advanced Distributed Simulation (JADS) experience with high 
level architecture (HLA), discusses the utility of HLA to the test and evaluation (T&E) 
community, and presents the requirements that HLA must meet to reach its full potential for use 
in T&E. 

2.0 Overview 

The Department of Defense (DoD) has always used rapidly evolving information systems 
technology to support its needs. Early efforts were sharply focused on training applications and 
evolved from the simulation network (SMNET) program managed by the Advanced Research 
Projects Agency (ARPA) and the Army. HLA is the latest step in the effort to enable DoD 
simulations to connect with one another in a common virtual environment. Although it is not yet 
an approved Institute of Electrical and Electronics Engineers (IEEE) standard (as of the writing 
of this report) in 1996 Dr. Paul Kaminski, Undersecretary of Defense (Acquisition and 
Technology), directed DoD to make all simulations HLA compliant (Appendix B). HLA 
consists of an interface specification, implementation rules, and tools to help users create 
synthetic environments in which live, virtual, and constructive (synthetic) players can interact. 
The centerpiece of HLA is the runtime infrastructure (RTI) which is a distributed software 
application that handles all the simulation to simulation communication. 

The JADS Joint Test and Evaluation (JT&E) program is an Office of the Secretary of Defense 
(OSD)-sponsored joint service effort designed to determine how well an emerging technology, 
advanced distributed simulation (ADS), can support test and evaluation activities. Because of 
widespread interest in using synthetic environments (and the technology and standards needed to 
create them) to support test and evaluation, the Air Force Operational Test and Evaluation Center 
(AFOTEC) felt that a JT&E program could serve as an exploratory vehicle. JADS was tasked to 
investigate the utility of ADS, including distributed interactive simulation (DIS) and HLA, for 
T&E; to identify the critical concerns, constraints, and methodologies when using ADS for T&E; 
and finally, to identify the requirements that must be introduced in ADS systems if they are to 
support a more complete T&E capability in the future 

JADS investigated ADS applications in three slices of the T&E spectrum: the System Integration 
Test (SIT) explored ADS support of air-to-air missile testing; the End-to-End (ETE) Test 
investigated ADS support for command, control, communications, computers, intelligence, 
surveillance and reconnaissance (C4ISR) testing; and the Electronic Warfare (EW) Test 
examined ADS support for EW testing. The JADS Joint Test Force (JTF) was also chartered to 
observe or to participate at a modest level in ADS activities sponsored and conducted by other 
agencies in an effort to broaden conclusions developed in the three dedicated test areas. 



The JADS EW Test used HLA to link manned threat simulators with a geographically separated 
self-protection jammer. The JADS partnership with Defense Modeling and Simulation 
Organization (DMSO) made the effort successful. JADS experiences with DMSO in building 
the' EW Test architecture and in executing the test events form the basis of this report. 
Additional insight has come from JADS participation in the HLA Architecture Management 
Group and in several modeling and simulation symposia and workshops. 

3.0 Key Findings 

The JADS EW Test team successfully implemented HLA as part of its distributed test events. 
RTI performance met JADS requirements. Even though JADS experienced and solved a number 
of problems and even though HLA is still maturing, it is ready to be used in T&E. 

HLA has utility for T&E. It is an enabling technology for distributed testing. As more 
simulations become HLA compliant, they become resources to the test designer looking to create 
a richer, more realistic synthetic environment for testing. However, as noted above, HLA is still 
maturing. As it matures, T&E must remain involved to ensure HLA continues to meet T&E 
needs and preferences. For example, T&E will favor RTI performance over adding more RTI 
services, while other communities may be willing to lose performance in exchange for more 
services. All communities will demand well-documented, high quality RTIs. However, high 
quality for the T&E community means more than "bug" free. T&E will also want RTIs with 
stable, nearly deterministic performance. T&E will find HLA more useful as it becomes more 
widely accepted and implemented by the modeling and simulation community at large. More 
HLA-based models and simulations should provide the test designer with ready resources to 
create richer, more realistic synthetic environments for testing. Emerging requirements for new 
HLA capabilities from diverse modeling and simulation communities should also be evaluated 
from the T&E perspective. The T&E community needs to become more educated and remain 
involved in HLA to ensure that HLA remains useful. 



1.0 Purpose 

This report describes the Joint Advanced Distributed Simulation (JADS) experience with high 
level architecture (HLA), discusses the utility of HLA to the test and evaluation (T&E) 
community, and presents the requirements that HLA must meet to reach its full potential for use 
in T&E. 

2.0 High Level Architecture 

The Department of Defense (DoD) has always used rapidly evolving information systems 
technology to support its needs. Early efforts were sharply focused on training applications and 
evolved from the simulation network (SEVINET) program managed by the Advanced Research 
Projects Agency (ARPA) and the Army. Conceptually, the early projects were directed toward 
linking training simulators with human operators at distributed geographical sites and in a 
common virtual environment. The players interacted with one another in this common 
environment in near real time. Over the years SEVINET has evolved into a technology 
implementation which is more flexible and robust and includes different types of simulators with 
different levels of fidelity. The capabilities spawned by the SIMNET evolution are now called 
distributed interactive simulation (DIS) and are documented in Institute of Electrical and 
Electronics Engineers (IEEE) Standard 1278. The high level architecture is the latest step in the 
effort to enable DoD simulations to connect with one another in a common virtual environment. 
Although it is not yet an approved IEEE standard (as of the writing of this report) in 1996 Dr. 
Paul Kaminski, Undersecretary of Defense (Acquisition and Technology), directed DoD to make 
all simulations HLA compliant (Appendix B). HLA consists of an interface specification, 
implementation rules, and tools to help users create synthetic environments in which live, virtual, 
and constructive (synthetic) players can interact. The centerpiece of HLA is the runtime 
infrastructure (RTI) which is a distributed software application that handles all the simulation to 
simulation communication. 

HLA differs from its predecessors in several key aspects. It is based on object-oriented design 
concepts. The terminology, recommended design processes, programming language of choice 
(C++), and tools of HLA borrow heavily from this software design methodology. However, 
while the architecture uses the terminology, it does not completely implement all the concepts of 
object-oriented design. Those unfamiliar with object-oriented design can be easily lost in the 
jargon and design approach. Those very familiar with object-oriented design may assume more 
capabilities than are actually implemented. We highly recommend attending Defense Modeling 
and Simulation Organization (DMSO)-sponsored training to become familiar with the terms, 
concepts and specifics of the implementation. The remainder of this report is written using HLA 
terms. The following paragraphs are a brief description of the key concepts and terms used in 
HLA. We have also compiled a list of common HLA terms with their definitions (Appendix A). 



2.1 HLA Overview 

This section was developed iirectly from a presentation made by Dr. Judith Dahmann, DMSO, at 
the Spring 1997 Simulation Interoperability Workshop. The entire presentation can be 
downloaded from the Simulation Interoperability Standards Organization (SISO) Web page at 
http://siso.sc.ist.ucf.edu/. 

HLA was created in response to shortfalls in its predecessors, DIS and aggregate level simulation 
protocol (ALSP). DIS allows users to create a synthetic environment within which humans may 
interact through simulation(s) at multiple sites networked using compliant (IEEE Standard 1278- 
1, 1278-1 A, and 1278-2) architecture, protocols, standards, and databases. DIS was created to 
meet the needs of the real-time, platform-level niche of the modeling and simulation (M&S) 
market. DIS used fixed message structures and messages were broadcast to all players. On the 
other hand, ALSP was created to meet the needs of the discrete-event, logical-time niche of the 
M&S market. It was designed to accommodate legacy simulations. Both DIS and ALSP were 
limited and neither provided a single technical architecture for distributed M&S. HLA was 
created to answer the needs of both the DIS and ALSP communities as well as provide a bridge 
for each by being the single technical architecture. 

HLA was built on the following premises. 

• No single monolithic simulation can satisfy the needs of all users. 
• All uses of simulations and useful ways of combining them cannot be anticipated in advance. 
• Future technological capabilities and a variety of operating configurations must be 

accommodated. 

As a result, HLA was created to allow simulations, live entity surrogates, viewers, and data 
collectors to interact with one another by separating the functionality of each from the general 
purpose supporting runtime infrastructure. (In HLA terms, each simulation, live entity surrogate, 
viewer, data collector is called a federate. A federation is a named set of interacting federates.) 
In order to interact, the federation of simulations has to have a common understanding of player 
relationships and interface. HLA provides both. The architecture specifies the following. 

• Ten basic rules that define the responsibilities and relationships among the components of the 
federation. 

• An object model template that specifies the form in which simulation elements are described. 
• A runtime interface specification that describes the ways that simulations interact during an 

operation. (This specification allows the simulations to interface with software called the 
runtime infrastructure. The RTI is essentially a distributed application that provides the 
simulation to simulation communications, provides time management services, and performs 
other federation control functions. Each simulation deals with a local RTI instance.) 



HLA is really a standard that does not mandate a specific software implementation. (This is an 
important concept that will get explored later.) The rules are a high-level articulation of 
responsibilities of each federate. 
1. Federations shall have an HLA federation object model (FOM) documented in accordance 

with the HLA Object Model Template (OMT). (A FOM is similar to a software interface 
specification.) 

2. In a federation, all object representations shall be in the federates, not in the RTL 
3. During a federation execution, all exchange of FOM data among federates shall occur via the 

RTL 
4. During a federation execution, federates shall interact with the RTI in accordance with the 

HLA interface specification. 
5. During a federation execution, an attribute of an instance of an object shall be owned by only 

one federate at any given time. 
6. Federates shall have an HLA simulation object model (SOM) documented in accordance with 

the HLA OMT. (This rule requires that each simulation describes the functionality it is able 
to provide to a federation in OMT terms. All functions may not be used in any given 
federation.) 

7. Federates shall be able to update and/or reflect any attributes of objects in their SOM and 
send and/or receive any SOM object interactions externally, as specified in their SOM. 

8. Federates shall be able to transfer and/or accept ownership of attributes dynamically during a 
federation execution, as specified in their SOM. 

9. Federates shall be able to vary the conditions (e.g., thresholds) under which they provide 
updates of attributes of objects, as specified in their SOM. 

10. Federates shall be able to manage local time in a way which will allow them to coordinate 
data exchange with other members of a federation. (Simulations in a federation must manage 
time so that there appears to be one clock. Internally, a simulation manages time any way it 
wishes, as long as it meets its commitments to other simulations in the federation.) 

There are two key HLA elements that appear several times in the rules. The first is the OMT. 
The OMT provides a standard format for specifying the capabilities and interface requirements of 
a federate via a SOM or a federation via a FOM. DMSO provides a tool, the object model 
development tool (OMDT), to make it easier for users to create the FOMs and SOMs called for 
in the rules. (JADS experience with the OMDT is described in Section 12.5.1.) Simulation 
owners who want their simulations to be certified HLA compliant will need to obtain the OMDT 
and get acquainted with it as they prepare their SOM. 

The second key element is the RTL As noted above, the RTI is a distributed application that 
provides the backplane that allows simulation to simulation communication, provides federation 
management services, and when required, time management services. Simulations interface with 
the local RTI component. The local RTI components communicate with one another to move the 
data around and to perform the management services. The interface specification standardizes 
the RTI/simulation interface as well as sets some limits on RTI behaviors. However, the 
interface specification does not require any particular software implementation. While DMSO 
has created several RTI versions to prove the interface specification, commercial RTI versions 



will become the norm in the future. Just prior to the creation of this report, the first commercial 
RTI version RTI 1.3 Next Generation was certified. 

2.2 Implications of HLA 

HLA places no requirements on data format or meaning. There are no fixed message structures 
replacing the DIS standard. This allows the designer more flexibility in tailoring the messages to 
fit the problem at hand and to more easily live within constraints of the network architecture. 
However, it increases the complexity of integration. The burden of integration under HLA rests 
entirely on the designers of the federation to agree on what objects will be present in the 
federation, how the objects will be represented, what federate owns each object, what object 
attributes are needed by other objects in the scenario, and what interactions will occur among 
objects. Within HLA, the common understanding is captured in the FOM. Another tool, called 
the Federation Execution Planner's Workbook (FEPW), is used to map the objects and data 
messages onto the communications/computer hardware elements. Users may find these need to 
be augmented to fully capture the complexity of the federation. 

HLA provides a common interface to the communications infrastructure. This opens the door for 
the simulation to interact with other simulations. The HLA interface specification addresses the 
interface between the simulation and the RTI. This allows the simulation designer to treat the 
communications with other federates in a more abstract manner by just calling RTI services. The 
HLA places no requirements on network protocols or RTI implementation details beyond those 
contained in the interface specification currently being considered by IEEE. Likewise, current 
RTIs do not interoperate, and there is no requirement in the interface specification to make them 
interoperate. This allows room for commercial RTI developers to create better RTIs by applying 
the latest technology and network protocols. It also effectively isolates the simulation from the 
network protocols. This in turn gives the federation the flexibility to select the RTI that best 
satisfies the federation requirements. Simulations that expect to operate within several different 
federations need to provide an interface that allows different FOMs and their associated message 
structures to be changed out with minimal changes to the simulation. This is sometimes referred 
to as a flexible interface. 

The interface specification allows two different levels of message delivery service: best effort 
and reliable. Current RTI implementations use user datagram protocol (UDP) multicast for best 
effort and transmission control protocol (TCP)/Internet protocol (IP) for reliable. While these are 
standard protocols, implementation in operating systems and communications hardware varies. 
This ultimately impacts the performance of the HLA federation and sets the limits on message 
throughput and latency. Attempts to reduce latency or improve throughput must address the host 
computer operating system, protocol implementation, RTI performance parameter settings, local 
area network implementation, and wide area network implementation (if required). 

The federates themselves declare what they can provide (publish) to the federation and what they 
want from the federation (subscribe). The idea is to have the simulation in the federate deal only 
with data it requires or wants. The only guarantee that HLA provides is that the federate won't 
have to deal with unwanted messages. There is a temptation to believe this will save bandwidth. 



It is up to the RTI developer to decide if filtering will be done before the data are transmitted or 
after they are received by the local RTI component. 

The initial implementations of the RTI tried to capitalize on an emerging Object Management 
Group standard. The Common Object Request Broker Architecture (CORBA) is the Object 
Management Group's answer to the need for interoperability among the rapidly proliferating 
number of hardware and software products available today. Simply stated, CORBA allows 
applications to communicate with one another no-matter where they are located or who has 
designed them, (www.omg.org/corba/whatiscorba.html) Even though CORBA was created with 
client-server software applications in mind, it has features that make it attractive to use in an RTL 
While current RTI versions have moved away from CORBA, it may well find its way back into 
future versions. The use of CORBA may have implications on RTI performance. Federation 
designers should not treat the RTI as a black box. 

3.0 JADS Overview 

The JADS Joint Test and Evaluation (JT&E) program is an Office of the Secretary of Defense 
(OSD)-sponsored joint service effort designed to determine how well an emerging technology, 
advanced distributed simulation (ADS), can support test and evaluation (T&E) activities. 
Because of widespread interest in using synthetic environments (and the technology and 
standards needed to create them) to support T&E, the Air Force Operational Test and Evaluation 
Center (AFOTEC) felt that a JT&E program could serve as an exploratory vehicle. Both the 
developmental and operational test communities shared interest. Accordingly, the JADS JT&E 
program was nominated. The services concurred in the need for rigorous examination of the use 
of synthetic environment technology and the OSD Deputy Director of Test and Evaluation 
chartered JADS as a joint test program in October 1994. JADS was chartered to investigate the 
utility of ADS for both developmental test and evaluation (DT&E) and operational test and 
evaluation (OT&E). JADS was tasked to investigate the utility of ADS, including DIS and HLA, 
for T&E; to identify the critical concerns, constraints, and methodologies when using ADS for 
T&E; and finally, to identify the requirements that must be introduced in ADS systems if they are 
to support a more complete T&E capability in the future. 

JADS investigated ADS applications in three slices of the T&E spectrum: the System Integration 
Test (SIT) explored ADS support of air-to-air missile testing; the End-to-End (ETE) Test 
investigated ADS support for command, control, communications, computers, intelligence, 
surveillance and reconnaissance (C4ISR) testing; and the Electronic Warfare (EW) Test 
examined ADS support for EW testing. The JADS Joint Test Force (JTF) was also chartered to 
observe or to participate at a modest level in ADS activities sponsored and conducted by other 
agencies in an effort to broaden conclusions developed in the three dedicated test areas. 



4.0 JADS EW Test 

4.1' EW Test Description 

To determine the utility of ADS technology for EW T&E, JADS used the HLA in two phases of 
the three-phased test program. The test phases were designed to allow the direct statistical 
comparison of ADS-based test results to results from traditional tests to measure the impact of 
ADS. To accomplish this, a reference test condition (RTC) was established and recreated in each 
test phase. The RTC defined the aircraft flight profile, the threat engagement zones and rules, the 
self-protection jammer (SPJ) pod responses, and the relevant data to be collected. Phase 1 was a 
series of traditional tests accomplished on an instrumented open air range (OAR) and in a 
hardware-in-the-loop (HITL) facility. In both environments, JADS used similar manned threat 
simulators, the same SPJ pod, and the same aircraft flight profiles. The HJTL tests used time- 
space-position information (TSPI) recorded on the OAR to remove potential sources of variation. 
The radio frequency (RF) environment, the threat systems, and the SPJ were all instrumented to 
calculate standard EW measures of performance from the data collected. Phase 2 and Phase 3 
used HLA to link different representations of the jammer to the HJTL facility threats. (Phase 2 
used a real-time digital system model while Phase 3 used the actual jammer mounted on an F-16 
suspended in an anechoic chamber.) Other elements necessary to recreate the OAR environment 
(such as aircraft position and attitude, threat simulator activation/deactivation commands, and 
other RF emissions activation/deactivation) were represented by simple federates that played data 
recorded in the OAR. These federates were brought together in a federation to gather data to 
evaluate the utility of ADS. The federate interactions were monitored, and the measures of 
performance were calculated in real time. 

Because JADS used HLA in developing the ADS architecture, the key operating component 
supporting the JADS test federations was the RTL JADS also attempted to use the available 
tools and recommended processes to determine how well the HLA would support the test and 
evaluation community. The direct comparison of traditional and ADS-based test results caused 
JADS to instrument the architecture to attempt to isolate where ADS-induced errors might 
appear. This resulted in a rigorous examination of the architecture including the RTI. 

4.2 EW Test Requirements 

The problem space was defined by the RTC used in the OAR test. Closed-loop testing using 
ADS technology runs the risk that the communications infrastructure transmitting the data 
interchange between objects (federates in this case) will affect the outcome either through lost 
interchanges or by altering the temporal nature of the interchange. This temporal change is 
usually an increase in the time for the interchange to occur and is called latency. The amount of 
allowable latency depends on the nature of the interchanges and the decision cycle of each system 
involved. The EW Test interchange of interest was the threat radar activation, jammer 
identification and response, and associated threat response. 



We focused on determining how much latency the jammer/threat interaction could tolerate and 
still be a valid test. Depending on how the engagement is carried out, the interaction can be the 
jammer's computer working against the threat's computer or the jammer's computer working 
against the threat's human operator. Latency is driven by the decision cycle times of the jammer 
computer and either the threat computer or the threat operator. The jammer used in the JADS 
test was simple and had a very short decision cycle. Likewise the threat computers had very 
short decision cycles. The analysis showed that it was unrealistic to model the computer to 
computer interaction. The latency expected from linking the HITL manned threat simulators at 
the Air Force Electronic Warfare Evaluation Simulator (AFEWES) in Fort Worth, Texas, to the 
jammer representation located at the Air Combat Environment Test and Evaluation Facility 
(ACETEF) at Patuxent River, Maryland, was too great to faithfully reproduce the engagements 
that normally occur at distances shorter than 50 kilometers (km). In fact, the analysis indicated 
that once the wide area network (WAN) communications time, the local area network (LAN) 
communications time, and the facility interface processing times for both AFEWES and 
ACETEF were accounted for, the acceptable latency for the RTI had to be a negative value. The 
decision cycle time for the threat operator was estimated to be 500 milliseconds (ms), which we 
believed was an achievable latency objective for JADS. Therefore, the limitation that we placed 
on the communication infrastructure latency with human operator interaction was 500 ms. Once 
the total latency was identified, the 500 ms were allocated to the communications infrastructure, 
facility interfaces, and the RTI. That means that from the time the threat radar changed state, the 
infrastructure had no more than 500 ms to get that message to the jammer and then return the 
jammer's response. (The jammer's decision cycle time or "response time" was not included in 
the 500 ms.) We referred to this as an "end-to-end interaction" during the EW Test. 

4.3 Network and Hardware Description 

The EW Test used dedicated T-l circuits, communications, and encryption devices to link JADS 
with two key EW facilities, AFEWES and ACETEF. Three network nodes interconnected a total 
of seven federates. Five federates represented critical components of the OAR test environment 
including the test aircraft, aircraft EW systems, and threat systems. Two federates provided a test 
control and test analysis capability. The JADS test control facility at Albuquerque, New Mexico, 
hosted four of the seven federates executing on dedicated Silicon Graphics, Inc., (SGI) 02 and a 
fifth federate executing on a Sun SPARCstation. (The federate hosted on the Sun SPARCstation 
was a data logger and visualization tool. It was a late addition into the architecture to reduce risk 
in test control and analysis. It only subscribed to data. When it functioned properly, it had no 
measurable impact on the federation. It is not in Figure 1, nor is it discussed any further in this 
report.) There was one federate executing on an SGI 02 at the ACETEF and one federate 
executing on an SGI Challenge at the AFEWES HITL facility. The Phase 2 network architecture 
is illustrated in Figure 1. 



SGI Challenge 

Logget 

_3 
ACETEF 

t 
AFEWES 

T 
■'■A 

:M 
S 

J 
E 

T 
S 

~"~"~~ 

■♦ 

|<- 

1 
Threats 

ADRS 
(Pent. PC) 

A/C = aircraft 
DSM = digital system model 
IADS = Integrated Air Defense System 
Pent = pentium 

ADRS = Automated Data Reduction Software 
Env = environment 
JETS = JammEr Techniques Simulator 
TAMS = Tactical Air Mission Simulator 

API = application program interface 
I/F = interface 
PC = personal computer 

T-1 = digital carrier used to transmit a formatted digital signal at 1.544 megabits per second 

Figure 1. JADS EW Test Phase 2 Test Architecture and Federates 

JADS added network sniffers into the Phase 3 architecture to provide more insight into data loss 
problems seen in the Phase 2 execution. One sniffer was added at each site in parallel to the 
LAN to record all incoming and outgoing WAN message traffic. The data loss problems were 
not seen in Phase 3. However, these sniffers allowed us to examine other phenomena and were 
essential in discovering the single instance of a reliable message being lost during the Phase 3 
data analysis. 

RTI time management services were not used. Time synchronization came from an Inter-Range 
Instrumentation Group (IRIG) B signal provided at each facility by a local global positioning 
system (GPS) receiver. All federate computers had a card installed that could use the IRIG B 
signal as a time source. This proved generally acceptable, although we found federates that read 
time directly off the card were more accurate than federates that used system time and additional 
software to set the system time using the time card as the reference. 

JADS message structures and data logging scheme were designed to aid in the analysis of 
latency. JADS required each federate to add a time stamp when the message was created. The 
data logger JADS created logged all data at the simulation/RTI application interface at each 
federate.  The logger time stamped and logged each message as it crossed the interface.  JADS 
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also required that each message from each object be numbered sequentially by the federate. The 
combination of the time stamping at several points in the transmission chain from data 
production to data consumption coupled with the synchronized clocks, the unique message 
number, and the network sniffers (in Phase 3) allowed JADS to track each message through the 
entire network. JADS could also quickly identify any lost messages and pinpoint where the 
message was lost. 

JADS constructed a WAN test bed to reduce the WAN/LAN/RTI integration risk for Phase 2. 
The test bed was located at JADS in Albuquerque, New Mexico. It was constructed from the 
WAN hardware prior to activation of the T-l lines and installation of the WAN hardware at the 
two remote sites. After Phase 3 was complete, the network was shut down and the WAN 
hardware returned to JADS. JADS reassembled a significant portion of the test bed to examine 
other RTI issues. These results are discussed in sections 5, 7, and 9 in this report. 

4.4 JADS EW Test Federation 

The JADS EW Test federation (the federation) linked seven federates passing attributes and 
interactions (messages) within constrained timing tolerances representing EW systems operating 
in a live test environment. A federate residing at ACETEF in Patuxent River, Maryland, 
represented the jammer. The surface-to-air missiles (threats) were represented by a federate at 
the AFEWES facility in Fort Worth, Texas. The AFEWES federate represented two threats 
during a normal execution of the JADS EW Test. Two additional threats were represented by the 
radio frequency environment (RFENV) federate. Five federates were located in the JADS Test 
Control and Analysis Center (TCAC) facility in Albuquerque. New Mexico. The terminal threat 
hand-off federate (HANDOFF) cued the threat operators. The test control federate (TCF) 
controlled the start/stop of the federation and passed data to the real-time analysis tool 
(Automated Data Reduction Software [ADRS]) executing on a personal computer (PC). The 
RFENV federate published RF background. The platform federate (PLATFORM) published 
aircraft TSPI. The analysis federate subscribed to all data published by the other federates and 
provided a real-time display of the engagement. 

The federates joined the federation one at a time starting with the federates residing in the TCAC. 
As a federate joined, it began publishing link health check (LHC) messages. As soon as all 
federates had joined and other equipment was ready, TCF sent a start message to begin the run. 
After the start was received, all playback federates began publishing the data in their script. 
When a threat detected the aircraft, the AFEWES federate published mode change interactions as 
the threat's mode changed. Upon receipt of the mode change, the jammer federate published a 
jammer response interaction. At some time during the engagement, the threat fired missiles at 
the aircraft, and the AFEWES federate published missile entity state position attributes. After 
the run was complete, TCF sent a stop message, all federates resigned and the federation was 
destroyed. Each run (start to stop) lasted approximately four minutes. For Phase 2 of the JADS 
EW Test, the federates used RTI 1.3 release 4. RTI 1.3 release 5 was used for Phase 3. Table 1 
shows the maximum observed messages published per second for each federate. 
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Table 1. Maximum Publish Rates by Federate 

Federate 
ACETEF 
AFEWES 
HANDOFF 
PLATFORM 
RFENV 
TCF 

Maximum Messages Published (per second) 
28 
116 

43 
3 

5.0 RTI Performance Tests 

The federation development and execution process (FEDEP) recommends integration testing be 
accomplished prior to execution. JADS concerns led to the early creation of a test bed comprised 
of the actual communications hardware and computers that would be used in the EW Test. This 
provided JADS with the capability to test and tune all the components prior to the creation of the 
WAN. One of the key elements was the RTL JADS tested several RTI versions in the test bed 
prior to executing Phase 2. These included one version of RTI 1.0; two prerelease versions of 
RTI 1.3; and three post-release versions of RTI 1.3; release 3, release 4, and release 5. 

During the course of test build-up and execution, JADS learned that the test bed was a unique 
capability. After Phase 3 was complete and the WAN equipment was returned, we reassembled 
the test bed to examine RTI 1.3 release 6 and two commercial RTIs, RTI 1.3 NG (beta) and a 
reduced service RTI (1.3.1b) from Mak Technologies. Since there wasn't enough time for tuning 
the architecture as JADS had done with the earlier RTI versions, JADS ran the RTIs using the 
default settings. Users should be able to get somewhat better performance from each by tuning 
the architecture. The RTI 1.3 NG (beta) is not the version that DMSO recently certified as 
compliant with the 1.3 interface specification. The released RTI 1.3 NG should perform better 
than the beta version. 

This section discusses the test methods and results of both the pre-Phase 2 and post-Phase 3 
testing. Results are presented for RTI 1.3 release 4, release 5, release 6, RTI 1.3 NG beta, and 
Mak RTI 1.3.1b. 

5.1 Pre-Phase 2 Test Objective 

The primary objective of JADS RTI testing was to ensure that the EW Test had an acceptable 
communications infrastructure, including the RTI, for each ADS test phase in order to accurately 
recreate the critical interactions from the OAR test environment. Acceptable meant that all 
hardware and software components were behaving as required and that the total system latency 
was within budget over the expected range of message rates and sizes used to recreate the OAR 
test event interactions. 
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Prior to Phase 2, JADS conducted RTI tests to satisfy two key requirements. 

• .Quantitatively measure latency and expected RTI 1.3 software performance prior to JADS 
EW Test Phase 2 and Phase 3. 

• Provide input to the verification, validation, and accreditation (VV&A) process for JADS 
EW Test Phase 2 and Phase 3. 

JADS conducted two types of RTI tests to meet these requirements. One-way testing was 
conducted to measure raw performance of the RTI between a sender and a receiver. Multiple 
federate testing was conducted to predict the performance of the JADS federation. 

RTI test results were provided on a regular basis to the DMSO technical support and RTI 
software developers. 

After JADS completed Phase 3, we had time to briefly examine the performance of the latest RTI 
versions. Since we froze our Phase 3 configuration with RTI 1.3 version 5, we had no 
experience with several RTI versions. The test bed was to transition to the Foundation Initiative 
2010 project, so JADS needed to determine if the tools and test bench could be used to test other 
RTIs. There was also interest within the community for JADS to test the latest RTI versions on 
the JADS test bed. JADS reassembled the test bed and performed basic tests on RTI 1.3 release 
6, RTI 1.3 NG (beta), or the Mak RTI. The results presented in Section 5.3 were gathered after 
we completed Phase 3. We had a limited amount of time to collect the data. As a result, only a 
single execution of the test matrix was run with each of the RTI versions. The results are 
included in this report to illustrate the types of results we obtained. They are not a statistically 
significant sample. Where we had data for a particular RTI, we compared our results with our 
previous results to provide ourselves confidence that the test bed was operating correctly. 

5.2 Test Software 

The following is a description of the software tools JADS developed for testing the network 
architecture (including the RTI) in 1998. DMSO has since developed its own benchmarking 
tools. JADS has no experience with the DMSO tools, so they are not discussed. 

There are two types of software JADS developed for the RTI tests — one-way software (non-RTI 
and RTI versions) and runtime configurable test federate software. Using the JADS test bed 
configuration, the one-way tests characterized the network and the RTI in the simplest of cases. 
The non-RTI tests gave an approximation of the raw network performance. There are three one- 
way test tools. The first used IP multicast without the RTL The second used TCP/IP without the 
RTI. The third used the RTI and could be configured for either best effort (IP multicast) or 
reliable (TCP/IP). All three tools sent messages from the sender to the receiver. The size and the 
frequency of the messages changed until the test matrix was complete. The one-way RTI 
software indicated the performance of the RTI and network combined. By comparing the RTI 
results with the raw network results, the performance of the RTI could be approximated.   By 
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modifying the federation execution data (FED) file, the tests could be executed using reliable 
(TCP) or best effort (IP multicast) transmission. 

The second type of software developed was runtime configurable test federate software (testfed). 
The testfed is an RTI federate capable of running in different configurations on multiple 
computers within a federation execution. The purpose of this software was to determine how the 
RTI performed in a more realistic environment under loads anticipated for the JADS federations. 
The testfed federate accepts command line arguments that specify the characteristics of an 
instance of the federate. The user can specify the federate identification (ID) number (-f), the 
duration of the test (-d), the size of the attributes and interactions (-s), the rate that attributes are 
published (-r), the number of updates at the specified rate (-n), the amount of time the federate 
should wait before starting to publish at its specified rate (-w), and whether interactions should 
be published (-i). There are only one attribute and one interaction used by all federates. All 
federates subscribe to the attribute and the interaction. 

5.3 One-Way Test 

5.3.1 Description 

The one-way tests were designed to exercise a communications link and the RTI with different 
data sizes and transmit rates. The sizes varied among 17, 51, 101, 301, 501, and 1001 bytes. The 
transmit rate varied among 5, 10, 20, 50, 100, 200, 400, and 500 hertz (Hz). The complete 
matrix of rate and size combinations was tested. Each test case, which consisted of a rate and 
size pair, ran for two minutes. A separate matrix test was executed for TCP, IP multicast, RTI 
reliable, and RTI best effort data. 

5.3.2 One-Way Test Results 

Table 2 summarizes the performance of IP multicast and RTI best effort transmission during the 
one-way tests. In the tests with RTI 1.3r5, 13% of the published packets were lost when 
publishing 301 bytes at 400 Hz. The maximum loss (72%) occurred when publishing 1001 bytes 
at 500 Hz. These results represent a single pass through the test matrix. The results for RTI 
1.3r4 and RTI 1.3r5 were compared with our previous results. The performance results presented 
were consistent with our earlier results. These results represent RTI performance in the JADS 
test bed. Other architectures will likely produce different results. Federation developers need to 
test in their own environment to understand how a particular RTI will perform. 
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Table 2. RTI Best Effort Performance in One-Way Tests 

Max Latency during Runs 
Test Type Losses Began With Losses With No Losses 

IP Multicast 301 bytes at 500 Hz 147-452 ms 7 - 14 ms 
RTI1.3r4 301 bytes at 400 Hz 214-512 ms 9 - 17 ms 
RTI1.3r5 301 bytes at 400 Hz '     214-512 ms 9 - 17 ms 
RTI 1.3r6 301 bytes at 400 Hz 511-518 ms 14 - 28 ms 
RTI 1.3NG beta 17 bytes at 100 Hz 3.3 - 7.2 sec 9 - 22 ms 
Mak RTI 1.3.1b 301 bytes at 500 Hz 160-460 ms 8- 17 ms 

Table 3 summarizes the performance of TCP and RTI reliable transmission during the one-way 
tests. Instrumentation points were the same as in the previous test. The "break point" was where 
the receiving federate started experiencing problems, displayed RTI TCP error messages, and 
was no longer receiving data. The "good" runs excluded runs when the RTI broke. 

Table 3. RTI Reliable Performance in One-Way Tests 

Test Type Break Point Latency in Good Runs 
TCP 301 bytes at 500 Hz 6 - 13 ms 
RTI1.3r4 301 bytes at 400 Hz 9 - 17 ms 
RTI 1.3r5 301 bytes at 400 Hz 9- 17 ms 
RTI1.3r6 301 bytes at 400 Hz 14- 19ms 
RTI 1.3 NG beta * 9 - 11 ms 
Mak RTI 1.3.1b 17 bytes at 100 Hz 539 - 605 ms 
* Never broke but maximum data publish rate achieved was 234 Hz 

Since the worst case total load estimated for the JADS EW Test was approximately 100 bytes at 
200 Hz, the performance of RTI 1.3r4 (the latest version available at the time of Phase 2) was 
considered acceptable for further screening (using the multiple federate test described in Section 
5) prior to the JADS EW Test Phase 2. Phase 2 execution was hampered by a data loss problem 
and by federate "core dumps." RTI 1.3r5 was available for use in Phase 3 execution, so JADS 
took time to test it. JADS determined that RTI 1.3r5 fixed some of the problems with RTI 1.3r4 
and did not introduce any new problems that would adversely affect the JADS tests. Therefore 
RTI 1.3r5 was used for Phase 3. 

Table 4 shows the maximum latency observed in the one-way reliable tests with RTI 1.3r5. 
Unlike the previous data, these results were not obtained in the test bed but on the actual installed 
network. These results provide a glimpse into the differences between local test bench results 
and those obtained on an actual WAN. As indicated by the data in this table (e.g., 101 bytes at 
100 Hz and 101 bytes at 200 Hz), there are other factors besides size and transmit rate that 
influence the latency. The items without data are where the RTI broke. 
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Table 4. RTI 1.3r5 Reliable Maximum Latency 

Packet Size 

Rate 17 51 101 301 501 1001 

5 0.039 0.011 0.011 0.012 0.034 0.018 

10 0.011 0.010 0.016 0.027 0.014 0.023 

20 0.026 0.011 0.011" 0.088 0.018 0.018 

50 0.085 0.028 0.016 0.014 0.015 0.033 

100 0.034 0.016 0.150 0.020 0.082 0.123 

200 0.021 0.043 0.020 0.042 0.046 

400 0.019 0.022 0.127 

500 0.128 0.216 0.046 

5.4 Multiple Federate Test 

5.4.1 Description 

Once the one-way results were in the reasonable region, the next test used a multiple node, 
multiple federate test that was more representative of the Phase 2 federation. JADS simplified 
the Phase 2 federation to three federates with each federate representing a single facility. To 
simulate the AFEWES federate, we configured testfed on one computer to publish 10 attribute 
updates every 50 ms. To simulate the four federates at JADS, we configured another instance of 
testfed to publish 2 attribute updates every 50 ms. The ACETEF node was simulated by 
configuring testfed to publish 1 attribute update every 50 ms. All three federates published 
interactions at approximately 2 Hz. The size of attributes and interactions was 121 bytes. 
Attributes were published best effort. Interactions were published reliable. The test duration was 
five minutes. Fifteen runs were made in this configuration. 

5.4.2 Multiple Federate Test Results 

The results of the multiple federate tests with RTI 1.3r5 are shown in Table 5. The JADS 
federate was the only one that experienced attribute and interaction losses. Upon further 
examination of the data, it was discovered that all the losses occurred at the start of the run. The 
ACETEF and AFEWES federates were started first. The JADS federate was configured as the 
controller federate. This means it sent the start interaction to begin the test. While the ACETEF 
and AFEWES federates were waiting for the start they published dummy data at 1 Hz. There 
was no wait interval specified for the JADS federate. So as soon as it was started, it began 
publishing at 20 Hz. The actual start-up sequence used in Phase 2 and Phase 3 avoided this 
problem. While we had seen this problem in integration testing, these data illustrate the impact 
of publishing data immediately after start-up at a rate faster than 1 Hz. JADS documented 
problems with data loss at the start of runs when federates begin publishing immediately. 
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Table 5. Multiple Federate Test Results 

Federate Name ACETEF AFEWES JADS 
Attributes Published (per sec) 20 200 40 
Interactions Published (per sec) 2 2 2 
Attributes Received (per second) 240 60 220 
Attributes Lost 0 0 22-44 
Attribute Maximum Latency 127 114 100 
Attribute Mean Latency 20 17 20 
Interaction Maximum Latency 97 41 38 
Interaction Mean Latency 22 19 22 

6.0 RTI Performance During the JADS EW Test 

Table 6 shows performance data of the RTI during the JADS EW Test. Federate problems that 
caused a run to be aborted included the crash of one or more federates and lost TSPI data from 
the platform federate. Procedure problems were usually due to the loading of an incorrect script. 
The yield of usable runs was higher for Phase 3 (88% versus 72%) indicating that RTI 1.3r5 was 
more stable than 1.3r4. 

As mentioned earlier, the acceptable end-to-end latency (from radar mode change to jammer 
response) was determined to be 500 ms. Any runs with an end-to-end latency greater than 500 
ms were considered bad. The Phase 3 tests (using RTI 1.3r5) had only one bad run (589 ms for 
the end-to-end latency). The maximum latency for the good runs was 10% higher for Phase 3 
(417 ms versus 380 ms). However, the mean value for Phase 3 was 35% lower than Phase 2 
(167 ms versus 255 ms) once again indicating that the later release had better performance. 

Table 6. EW Test RTI Performance 

Phase 2 Phase 3 
RTI Version 1.3r4 1.3r5 
Total runs (excluding excursions) 341 255 
Runs aborted due to federate problems 83 20 

due to procedure problems 10 10 
due to network problems 2 1 

Usable runs (total - aborted) 246 224 
Runs with unacceptable latency (bad runs) 8 1 
Good runs (usable - bad) 238 223 
Maximum latency in bad runs (ms) 12352 589 
Latency in good runs (ms) 

minimum 114 113 
mean 255 167 
maximum 380 417 
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7.0 Technical Lessons Learned 

7.1 No Plug-and-Play for High Performance Federations 

RTI 1.3r4 (used in Phase 2) and RTI 1.3r5 (used in Phase 3) were adequate for the JADS tests. 
However we determined the JADS EW Test performance requirements early in the test 
development process. We tested many versions of the RTI within the context of these 
requirements. We started RTI testing well in advance of our actual tests (about one year). We 
found problems with the RTI, but we had plenty of time to have the problems fixed or 
experiment and develop a workaround for them. If you have specific performance requirements 
for your federation, you may be able to achieve them. However, it will take some work. Before 
your performance requirements are met, plan on spending some time experimenting with runtime 
infrastructure initialization data (RID) parameters, your federate implementation, tick, and other 

options in your architecture. 

7.2 Data Packet Size 

The largest JADS message (attribute or interaction) was 94 bytes. However, by the time the 
message reached the network, the size of the message was 298 bytes. This additional overhead 
came from the Ethernet header and checksum, the IP header, the UDP header, and the RTI. The 
RTI contribution to this overhead was approximately 70 bytes. 

7.3 Network Architecture 

The JADS EW Test network was initially configured using an unswitched, half duplex, lOBaseT 
LAN. JADS RTI tests occasionally had reliable latency values of more than one second. The 
cause of these high latency spikes has been traced to excessive Ethernet collisions. A switched, 
full duplex, 100BaseTX LAN network was installed and the number of Ethernet collisions 
dropped to zero. The one-second latency spikes were eliminated. The JADS EW Test might not 
have been successful if it had been executed using the unswitched, half-duplex configuration of 

the network. 

7.4 TCP Implementation 

RTI reliable traffic is published using transmission control protocol (TCP). TCP 
implementations vary from operating system to operating system. The algorithms used to 
retransmit corrupted or lost packets (e.g., due to Ethernet collisions) can add significant latency 
(more than one second). The JADS EW Test was able to avoid this problem by configuring the 
network as a switched (versus a shared) Ethernet. Some TCP implementations (e.g., IRIX 6.3) 
use the Nagle algorithm to reduce network traffic. This algorithm causes the TCP 
implementation to hold a message for up to 200 ms in the event that an acknowledge or other 
message can be sent in the same network packet. To minimize latency, a federation with 
additional TCP connections (other than those created by the RTI) may want to disable the Nagle 
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algorithm by setting the TCP_NODELAY socket option. The RTI disables the Nagle algorithm, 
but it provides options in the RTI.rid file to perform bundling if desired. 

7.5 Single Processor Computers 

Single processor computers are more difficult to use in high performance federations. The single 
processor is a resource that has to support the operating system, the simulation software, the RTI 
local component, and any other software (e.g., the JADS logger) or hardware (e.g., a time card). 
Two factors in making all this work are the arguments supplied to the RTI tick service that 
allocates processor time to the RTI and the size of the operating systems time slice that is the 
minimum amount of time the operating system will allocate to an executing process. JADS 
found that, in some cases, the size of the operating system's process scheduling time slice could 
affect latency. However, this only affected federates executing on single processor computers. 
The default time slice on SGI computers (defined by the kernel parameter slice_size) was 30 ms. 
Table 7 shows the results of a simple one-way test between two computers on the same LAN 
using the zero-argument form of the RTI tick service comparing time slices of 10 ms and 30 ms. 

Table 7. Time Slice Comparison 

Time Slice Size 30 ms 10 ms 
Minimum Latency 14 ms 6 ms 
Maximum Latency 110 ms 56 ms 
Mean Latency 34 ms 25 ms 
Max Time in Tick (sender) 113 ms 13 ms 
Max Time in Tick (receiver) 98 ms 42 ms 

When a federate is executed on a single processor machine, other software running on that 
machine can increase latency of data to and from the federate. Graphics updates in particular can 
severely impact latency. The JADS team noticed that a graphical screen saver caused latency 
spikes in the hundreds of milliseconds. High latency spikes were also caused by network file 
transfers and remote logins. 

7.6 Process Sleep 

Since the federate and the RTI are single threaded, care must be taken when using sleep (or other 
variant such as sginap) within the federate. If the federate sleeps, the local RTI component 
(LRC) is also sleeping. While a federate (and its LRC) sleeps, it is possible for the entire 
federation to be waiting. 

7.7 Data Collection 

The HLA provides a flexible environment for linking simulations for distributed tests. 
Federations are free to define the format of messages exchanged among federates via the FOM 
and SOM.  However, this flexibility complicates data collection.  Since there was not a protocol 
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for data exchange (as in DIS protocol data units), a stealth logger that recognized and recorded all 
simulation traffic in a log file could no longer be connected to the network. 

The JADS EW Test team chose to implement an RTI interface logger for data collection. An 
interface logger resided between the federate software and the application program interface 
(API) to the RTI (Figure 2). 
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Figure 2. RTI Interface Logger 

An interface logger was chosen to accurately determine federate to federate message latency. 
Using an interface logger, messages were time stamped as they were sent to the RTI at one 
federate and when they were received from the RTI at another federate. Every message header 
also contained the data creation time. 

8.0 Runtime Infrastructure 

8.1 Tick 

The RTI software is single threaded. A federate must call the tick method to yield time to the 
RTL The tick method exists in two forms - one taking zero arguments [tick()] and another 
taking two arguments [tick(minimum, maximum)]. The zero-argument version yields time to 
each major activity within the LRC. A typical activity would be draining inbound event queues 
and providing callbacks to the federate via the FederateAmbassador. The two-argument version 
of tick also yields time to the LRC but suggests lower and upper bounds on the time being 
allotted to tick. If the specified minimum time interval has not elapsed after all available 
processing has been done, the LRC will pause until the minimum time interval has elapsed, then 
return immediately. 

In the zero-argument form of tick, the LRC completes all the work in its queues before it returns 
to the federate. This can potentially starve the federate of central processing unit (CPU) cycles. 
Using the two-argument form, the LRC will attempt to empty its work queues. However, if the 
maximum time is reached before the work is completed, the LRC will return to the federate.  If 
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the LRC completes its work before the minimum time has elapsed, it will attempt to use up the 
remainder of the time before returning to the federate thread. It does this by blocking the 
process. The LRC becomes unblocked and returns to the federate thread after the minimum time 
has expired. The LRC will process any incoming messages while the process is blocked. 

In JADS RTI performance tests, it was noticed that the zero-argument form would occasionally 
have high latency spikes. Latency results comparing the two forms of tick in a simple one-way 
test are shown in Table 8. For this test, one federate published only reliable attributes and 
interactions and the other federate only subscribed. The default slice size of 30 ms was used for 
these tests. The latency differences were due to the fact that the federates were executed on 
single processor machines. The zero-argument form never blocks the federate/RTI process. 
When software executes on a computer with only one processor it must contend with the 
operating system. Unless the federate performs input/output or blocks intentionally using some 
other method (like sleep), the zero-argument form of tick will not cause the federate and the LRC 
to block. The operating system will only wait so long for an opportunity to complete its work 
and then it will take control of the processor. The federate will have to wait to regain control of 
the processor. This manifests itself as additional latency. 

Table 8. Tick Comparison 

tick() tick(.010,.020) 
Minimum Latency 14 ms 6 ms 
Maximum Latency 110 ms 57 ms 
Mean Latency 34 ms 30 ms 
Max Time in Tick (sender) 113 ms 75 ms 
Max Time in Tick (receiver) 98 ms •   25 ms 

Since most federates in the JADS EW Test federation executed on single processor computers, 
the two-argument form of tick was used with a minimum value of 10 ms and a maximum value 
of 20 ms. This produced better latency results for the data published by the JADS federates. It 
should be noted that occasionally the RTI would use more than the maximum time specified. 

As federation developer, you must experiment with tick, number of federates and typical 
publication rates. If latency is not an issue or you are executing your federates on multiple 
processor computers and the LRC is not starving your federate, you may be able to use the zero- 
argument form of tick. This will relieve the federate of the responsibility of determining how 
much time to give the LRC. If the federate executes on a single processor computer or the LRC 
must deal with a lot of federation activity, you should probably use the two-argument form of 
tick. 

8.2 Attribute/Interaction Structures 

The implementation of attributes and interactions can affect performance. You can define each 
piece of data that can be associated with an object as a separate attribute as in the following 
excerpt from a FED file. 
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(class Live_Entity_State 
(attribute Data_Header best_effort receive) 
(attribute Object_Type best_effort receive) 
(attribute ObjectJVelocity best_effort receive) 
(attribute ObjectJLocation best_effort receive) 
(attribute Object_Orientation best_effort receive) 
(attribute Object_Acceleration bcst_effort receive) 

Or you can define a structure that contains all the data and only declare one attribute represented 
by the structure as in the following. 

(class Aircraft 
(attribute Live_Entity_State best_effort receive)) 

Construct Live_Entity_State 
Data_Header header 
Object_Type type 
ObjectJVelocity velocity 
Object_Location location 
Object_Orientation orientation 
Object_Linear_Acceleration     acceleration 

We ran a series of tests comparing the performance of the two methods of declaring attributes. In 
one case we declared twenty individual attributes for a test object (similar to the definition of an 
entity state object in the real-time platform reference [RPR] FOM) with a total size of 168 bytes. 
In another case we declared one attribute for a test object with a size of 168 bytes. We ran 
simple one-way tests with each object. There were no performance differences until we started 
publishing at 400 Hz. The tests with the individual attributes started experiencing data losses 
and high latency in the best effort tests and caused an RTI internal error in the reliable tests when 
the data were published at 400 Hz. The tests using the attribute structure did not experience 
these problems until data were published at 600 Hz. 

8.3 Reliable Data and Network Bandwidth 

By default every federate is configured with its own reliable distributor (RELDISTR). When a 
federate publishes a reliable message, its RELDISTR transmits the message to every RELDISTR 
in the federation. It's important to note that unless the federation uses data distribution 
management (DDM), all reliable messages will be sent to every RELDISTR whether the 
federates connected to that RELDISTR have subscribed to the data or not. The subscription 
filtering is performed by the LRC upon receipt of the message. So even if a federation minimizes 
which federates subscribe to data in an effort to reduce network traffic, the data will be sent to all 
federates if DDM is not used. 
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One way to minimize network traffic is to configure a LAN with a single RELDISTR. All 
federates on the LAN use the same RELDISTR to send reliable data to other federates at remote 
locations. In the JADS EW Test federation, there were five federates in the TCAC in 
Albuquerque. These federates were configured to use the RELDISTR created by the runtime 
infrastructure executive (RTIexec). Further information on how to configure RELDISTRs in a 
federation can be found in the "Reliable Service in RTI 1.3" paper found within the RTI.rid file 
editor help pages. 

8.4 Multicast Groups 

In the RTI 1.3 series developed by DMSO, as federates join a federation, multicast groups are 
created to handle the transmission of best effort data among the federates. A "broadcast" 
multicast group is also created to handle best effort traffic sent to all federates. Using default 
settings in the RTI.rid file, the RTI only initializes enough multicast groups to accommodate the 
best effort traffic among three federates. Once a fourth federate joins a federation, all best effort 
data destined for that federate (or any subsequent federates) is transmitted using the "broadcast" 
multicast group. The consequence of this is that all best effort data sent to the fourth (and 
subsequent) federate are sent to all federates regardless of whether the federate subscribed to the 
data or not. The LRC filters data that its federate has not subscribed to. Another RTI may or 
may not work the same way. Federation designers need to understand how the RTI.rid file 
settings affect the messages that the network and federates have to handle. 

8.5 RTI.rid File Parameters 

The RTI.rid file contains user-modifiable parameters that allow the developer to optimize the 
federation execution to achieve desired results (e.g., lower latency versus high throughput). As 
stated above, the JADS EW Test federation used a single RELDISTR for the federates in the 
TCAC. This was achieved by modifying the parameters auto_reldistr_config, reldistr_on, 
auto_discover_on, and discov_string. 

The JADS development team wanted to minimize latency on all messages in the federation. A 
feature of the RTI that increases throughput (and can also increase latency) is bundling. If 
bundling is turned on, the RTI will hold on to messages for a period of time so that multiple 
messages can be sent in a single data packet. To minimize latency, bundling must be turned off. 
The RTI.rid file parameters tcp_bundling_toggle and udp_bundling_toggle control bundling. 
Prior to RTI 1.3r5 bundling was turned on by default. Starting with RTI 1.3r5 bundling was off 
by default. 

TCP and UDP polling_interval were the only other parameters modified by the JADS EW Test 
federation. These identified the minimum amount of time between polls to check for incoming 
network traffic. The default value for these parameters was 5 ms. The JADS EW Test federation 
used a value of 0. A smaller interval means the network socket will be polled more frequently. 
This reduces the likelihood of packets being dropped because of a filled socket buffer. Larger 
intervals conserve CPU cycles. 
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8.6 Federate Join, Publish, and Resign 

During RTI tests if, after a federate joined, it immediately began publishing data at its normal 
data rates (e.g., 20 Hz), some best effort data were lost and reliable data experienced high 
latency. If a delay of a few seconds was added at the start when the federate published data at a 
low rate (e.g., 1 Hz), then the initial losses and high latencies did not occur. 

It was also noticed during the JADS EW Test Phase 3 that high latency on reliable data and 
dropouts on best effort data occurred when a federate joined late. Data recorded by EtherPeek (a 
network packet analysis tool) showed that the RTI transmitted a large number of messages, some 
of which were quite long when compared to the longest JADS message, when the late federate 
joined. To minimize latency on the first messages published, the JADS team recommends that, if 
possible, publication should be synchronized to begin only after all federates have joined. 

It is important that federate shutdown be synchronized as well. After a federate resigns from a 
federation, it must continue to tick the RTI for a few seconds so that the resignation is handled 
gracefully. 

9.0 Anomalies from Previous RTI Versions 

The problems documented in this section were identified in previous versions of the RTI and 
were fixed in subsequent versions (no later than RTI 1.3r6). Normally these would not be 
included in a report of this type; however, we found some of these problems when we briefly 
tested both RTI 1.3 NG (beta) and the Mak RTI indicating that there may be little if any 
communication among RTI development teams. If you use an RTI from another vendor and it 
exhibits these symptoms, it may be related to these problems. 

9.1 Reliable Message Buffering 

In some of our early RTI tests, we noticed that messages were being buffered when publish rates 
exceeded 5 Hz (see Figure 3). Upon further investigation, we determined that the buffering was 
caused by the IRIX TCP implementation of the Nagle algorithm. The Nagle algorithm buffers 
small packets on the transmit side for a period of time in the event other messages are being sent 
to the same node and thus can be sent in the same network packet. On SGI computers, the 
network can wait up to 200 ms before sending the buffered packets. 

The Nagle algorithm can be controlled using the TCP_NODELAY socket option. If 
TCP_NODELAY is set to TRUE, then the Nagle algorithm is turned off. On the SGI computers, 
the default value for this option is FALSE. Prior to version 1.3r2, the RTI ran with the operating 
system default setting for the TCP_NODELAY socket option. This means that the Nagle 
algorithm was in effect for both attribute and interaction data sent reliable. If data are published 
using reliable transport mode at data rates at or above 5 Hz, then the latency of the data increases. 
As a result of sharing this information with RTI developers, RTI version 1.3r2 sets the 
TCP_NODELAY option to TRUE, disabling the Nagle algorithm. However, there are RTI.rid 
file parameters that can be used to buffer messages. 
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Figure 3. Latency 101 Bytes at 20 Hz 

9.2 Multicast Time To Live 

In initial tests performed with RTI 1.0r2, best effort traffic was not received at any computer on a 
different LAN. Using the network packet "sniffer" tool to look at the network data packets, a 
JADS network engineer discovered that the time to live (TTL) value was set to one. A packet's 
TTL indicates how many hops it can take before it is discarded by the network. A value of one 
does not allow a packet to exit the LAN, i.e., to pass through a router to reach a system on 
another LAN or a WAN. Hence, a federation running with RTI 1.0r2 out of the box would not 
allow federates to communicate best effort traffic outside of a LAN. Using the JADS 2-node 
network configuration (shown in Figure 4) required network data packets to cross from one LAN 
through the routers (Micro-IDNX-20) to reach the test federate on another LAN mirroring the 
EW Test Phase 2 network architecture. DMSO provided a special library that allowed JADS to 
use RTI 1.0r2 across our network communications gear. Subsequent versions of the RTI 
provided for a user-defined parameter value in the RTI.rid file to set the TTL. This problem was 
observed in the beta version of RTI 1.3NG and the MAK RTL 

9.3 Excessive Best Effort Data Loss 

Prior to RTI 1.3r5, certain conditions in a federation could cause loss of best effort data from one 
or more federates. The loss could last for many seconds and recover. Or it could be permanent 
and never recover. Leading up to the Phase 2 tests, JADS experienced this problem 
intermittently with the platform federate (publishing aircraft TSPI at 20 Hz). There were times 
when some federates would not receive the TSPI data at the start of a run. It turned out that the 
federate join sequence affected the problem. JADS was able to institute a join sequence that kept 
the occurrence of the problem to a minimum. In general, to reduce this problem, the federate that 
joins first should not publish any high-rate, best effort data if possible. 
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10.0 Unexplained Anomalies 

10:i Best Effort High Latency 

You usually do not see abnormally high latency on data sent best effort. If a problem is 
encountered in the multicast transmission of a message, the message is simply dropped. This is 
not necessarily the case in architectures with the RTI installed. Phase 3 run 2 had higher than 
normal latencies on some best effort data received by the AFEWES federate. The maximum 
latency observed was more than one second. Normal latency for these messages should be less 
than 100 ms. The expected behavior of the network itself is to drop UDP multicast messages 
older than one second. 

10.2 Latency Spikes 

Figure 4 shows a latency spike that occurred in the one-way reliable tests using RTI 1.3r5. This 
spike occurred while publishing 101 bytes at 400 Hz. Similar spikes occurred at all data rates 
with all versions of the RTI as well as the raw TCP tests (without the RTI). The operating 
system and the fact that the tests were executed on single processor computers may have caused 
the problem. Latency spikes might be eliminated if the federates are executed on multiple 
processor computers. 
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Figure 4. RTI 1.3r5 Reliable Latency Spike Publishing 101 Bytes at 400 Hz 
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10.3 Differential Latency 

At •,times during the JADS EW Test, a message sent to multiple federates (using reliable 
transport) had significantly different latency at each of the receiving federates. In some cases the 
receiving federates were at different sites. There were also cases of the receiving federates 
residing on the same LAN (in the TCAC in Albuquerque) having significant differences in 
latency. 

Phase 3 run 28 is an example of the differential latency at different sites. ACETEF sent a burst 
of system under test (SUT) receiver track update (RTU) messages followed by two SUT jammer 
technique command (JTC) messages. In either the AFEWES log file summary or the JADS log 
file summaries, there was an abnormally high latency (> 200 ms in many cases) for the second 
JTC, but normal latency for the first. Also, if there was a high latency for the second JTC 
message in the AFEWES summary, then there was a normal latency in the JADS summaries, and 
vice versa. Perhaps, this indicates some kind of transient response problem in the RELDISTR. 
Or, it might be a transient response problem in the IRIX TCP. 

Phase 3 run 121 had examples of differential latency on the TCAC LAN. A JTC message was 
sent from the ACETEF federate. Most of the federates in the TCAC received it with, at most, 88 
ms of latency. The latency on this message to the TCF federate (also in the TCAC) was 225 ms. 

10.4 Reliable Data Loss 

By definition, reliable data are not supposed to ever get lost. They may arrive very late, but they 
should never be lost. During run 146 of Phase 3, a reliable message was lost. It appeared in the 
publishing federate's log file. The network sniffer data on the sending side confirm the message 
was transmitted. The network sniffer data on the receiving side show that the message was 
received and a TCP acknowledgment was sent back to the publishing federate. This implies that 
the receiving federate's LRC received the message. However, the message never appeared in the 
log files for any of the federates that were supposed to receive it. So the message was never 
passed from the RTI to the federate. Looking at the network analysis tools, there were no 
indications of any problems or errors, or excessive traffic at the time that the message was sent. 
It seems as though all six of the receiving LRCs lost the message. 

11.0 HLA Application to Other Types of T&E 

In this section we look at how ADS applied to the other two JADS tests. The section concludes 
with our assessment of the utility of HLA to T&E in general. 

11.1 HLA Application to the End-to-End Test and Legacy Simulations 

JADS found the strongest utility for distributed testing in the area of C4ISR systems. The JADS 
End-To-End (ETE) Test was designed to evaluate the utility of ADS to support testing of C4ISR 
systems. The test focused on the Joint Surveillance Target Attack Radar System (Joint STARS) 
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as one component of a representative C4ISR system. The ETE Test also evaluated the capability 
of the JADS TCAC to control a distributed test of this type and remotely monitor and analyze 
test results. 

The ETE Test consisted of four phases. Phase 1 developed or modified the components needed 
to develop the ADS test environment. Phase 2 used the ADS test environment to evaluate the 
utility of ADS to support DT&E and early OT&E of a C4ISR system in a laboratory 
environment. Phase 3 transitioned portions of the architecture to the E-8C aircraft, ensured that 
the components functioned properly, and checked that the synthetic environment interacted 
properly with the aircraft and actual light ground station module (LGSM). Phase 4 evaluated the 
ability to perform testing and evaluation in an ADS-enhanced live test environment. 

In 1994, the JADS ETE Test began the development of a radar simulation, the Virtual 
Surveillance Target Attack Radar System (VSTARS), that represented the Joint STARS E-8C 
aircraft and communicated with the Army's ground station module (GSM). This simulation 
would receive target data by interfacing with a DIS network that utilized IEEE Standard 1278. 
JADS found that for one phase of the test, the data provided in the entity state protocol data units 
(ESPDU) had to be reduced to fit within the constraints of a satellite communications 
(SATCOM) link to the E-8C aircraft. To solve this problem, JADS developed the concept of 
ground and air network interface units (NIU). This concept had a ground NJJJ (GNIU) that 
received and sent DIS protocol data units (PDU) - primarily ESPDUs. The GNIU then processed 
the ESPDU - dropping all the fields that were not used by VSTARS, performing coordinate 
conversions between World Geographic System 84 and Topocentric Coordinate System, and 
reducing the accuracy of the coordinate attributes from 32 bits to 16 bits before passing it to the 
air NHJ (ANIU), either via SATCOM or system bus. In an HLA environment, the data 
requirements for VSTARS could be limited to the reduced data sent to the ANHJ, thus 
simplifying the interface requirements. However, JADS decided to proceed with the use of DIS 
for the test utilizing VSTARS because we decided HLA was too immature to use in the effort. 
(The contracts for VSTARS were awarded prior to the HLA protofederation efforts.) Continued 
use of VSTARS mandates that it become HLA compliant prior to the first day of fiscal year 2001 
or be retired. 

JADS worked with the VSTARS developers to identify an executable DIS to HLA migration 
strategy. JADS identified several issues that needed to be addressed in the migration strategy. 
The key issue for the RTI was the number of objects that Joint STARS was capable of tracking 
and that VSTARS would be able to handle. Although the JADS test presented the VSTARS 
with more than 9,000 individual target objects during our tests, more recent uses of VSTARS 
have had requirements approaching 100,000 targets. We were curious about how many objects 
the RTI was capable of supporting, so we ran a test to see how many objects could be declared 
before the RTI failed. The results indicated that the current RTIs might have to be altered to 
support federations that require 100,000 objects to be visible to a single sensor. 

The second issue that affected the migration strategy came from the platform hardware and 
operating system that VSTARS uses. Since VSTARS is essentially a set of software interfaces 
and models that allow the actual Joint STARS operational flight programs (OFP) to interact with 
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a synthetic environment, the VSTARS is hosted on the same hardware (DEC Alpha) and 
operating system (Open VMS) as the OFP. That combination was not supported by any of the 
available RTI versions. Since it was impractical to migrate VSTARS, and we were concerned 
about the performance of an RTI designed and tested in a SUN/SOLARIS environment being 
compiled for ALPHA/Open VMS, we recommended using a gateway that would host the RTI 
and format the data messages for VSTARS. 

The final issue stemmed from the potential uses of VSTARS. The projected uses encompass the 
spectrum from a simulation tool to evaluate and perform trade-offs on new technology, a 
stimulator for test and evaluation, a stimulator for mission crew training, a mission rehearsal tool, 
and a simulation of Joint STARS for exercise support. Each of these applications has a different 
set of requirements, interfaces, and customers. At the same time, resources and configuration 
management issues dictate a minimum number of VSTARS configurations and interface 
strategies. They are faced with the development of a flexible interface capable of supporting a 
variety of requirements and capable of operating with a variety of RTIs. Such an interface would 
be a challenge for a team with a lot of experience in distributed simulation, much more so to a 
team of radar designers with a minimum of simulation and distributed simulation experience. 
From the standpoint of legacy simulations, especially those designed for test and evaluation, we 
believe the need to develop a flexible interface to a single simulation or test facility will be a 
common requirement. Future developers of such interfaces will need to carefully analyze their 
requirements and options to be successful. 

11.1.1 RTI Object Declaration Tests 

In the RTI object declaration tests, JADS attempted to register a certain number of objects, 
publish one update for each object, and then resign. The updates were published at 100 Hz. Two 
federates were used in the test. One registered the objects and sent the updates and the other only 
subscribed to the attribute and received the update. 

Table 9. Object Declaration Test Results 

RTI Max 
Objects 

Time to 
Register 

Time to 
Resign 

Data Rate 
Attempted 

Data Rate 
Achieved 

RTI 1.3r6 9500 315 sec 330 sec 100 Hz 100 Hz 
RTI 1.3 NG beta 10,000 45 sec 41 sec 100 Hz 26 Hz 
Mak RTI 1.3b 10,000 128 sec 0 100 Hz 78 Hz 

JADS found that if you do the test with only one federate, you can register more objects without 
a problem. One-federate tests may be the basis for some claims about how many objects some 
RTIs can register. However, we're not sure how meaningful it is to be able to register objects 
and publish attributes if no other federate is around to receive the data. 

29 



For RTI 1.3r6 
• Both federates must join the federation before the objects are registered. If the receiver waits 

^until all objects have been registered before it joins, it will get an RTI internal error. 
• Tick the RTI for 1.5 seconds during the register process every 100 objects. If you don't do 

this, the sender gets an RTI internal error. 

For RTI 1.3 NG beta 
• The sender registered all objects before the receiver joined. When the receiver joined before 

the registration started, it took 20 minutes to register and discover the objects. 

For Mak RTI 1.3b 
• Since the other RTIs had a limit of approximately 10,000 objects, Figure 9 shows the 

performance of the Mak RTI with 10,000 objects. However, the Mak RTI was able to 
register and update more objects. It took fifteen minutes to register 25,000 objects. But only 
a 29 Hz update rate could be achieved while trying to publish at 100 Hz. The RTI was able 
to register 75,000 objects in 80 minutes. But the publication of the data at 100 Hz, which 
should have lasted 12.5 minutes, took more than an hour before the program was terminated. 

• The resign of both federates was immediate. 

11.2 HLA Application to the System Integration Test 

JADS found utility for testing precision guided munitions using distributed testing techniques. 
SIT was executed in two different DIS-based architectures. In preparing this report, JADS re- 
examined the SIT to determine what, if any, concerns would have been introduced by replacing 
DIS with HLA. Two concerns were identified. The first was latency. While neither test was a 
true closed loop between the shooter and the target (the target did not respond to the missile 
firing), the one-way latency achieved in the Linked Simulator Phase was 100 ms from data 
production to consumption. This latency should be achievable in HLA-based architectures. 
However, the data would have to be passed using best effort and multiprocessor computers might 
have been required as well. It is possible that data loss might have been an issue for the one-time 
messages such as start and stop, but it is not likely to have been much worse than the DIS 
broadcast versions of the same messages. Data loss was not an issue for SIT. JADS believes 
that an HLA-based architecture could be developed using a current RTI that would meet SIT 
latency, although the use of multiprocessor computers would increase the cost of the architecture. 
HLA addresses this concern. 

The second concern was the use of non-HLA links in the architectures. SIT used two non-DIS 
links, one in each phase. The Linked Simulator Phase required a 1553 data link from the cockpit 
simulator acting as the shooter to the missile seeker laboratory. The data link was required to 
pass the initialization messages to the missile. Signal timing constraints prevented this link from 
working in DIS. The solution was to use a native 1553 link between the facilities. The Live Fly 
Phase required telemetry links from the live aircraft on the range. These signals were converted 
to DIS messages by the ground station receiving the signals. These are both cases where a non- 
HLA-link would be required to supply critical information into the federation. Since these would 
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not be documented in the FOM according to HLA Rule 3, it points to the need for an interface 
control document (ICD) that would cover more than the FOM. These types of links are likely to 
be very common in the T&E environment. The current HLA allows the federation designer to 
use, additional documents and tools in federation development. HLA addresses this concern. 

11.3 General Utility of HLA to T&E 

JADS demonstrated that HLA can support T&E federations. As T&E makes use of distributed 
testing technology, the community will use the protocols and connecting hardware that make 
sense. For example, telemetry is likely to be used where live aircraft on an open air range are 
involved in a distributed test. This means that the OMDT and the FEPW are not the only tools a 
test designer will need to create distributed tests when HLA is only one of the linking 
architectures. This will also stress the definition of "HLA compliant." 

HLA promises to provide access to simulations that are otherwise unavailable to the tester. This 
will allow the tester to develop richer synthetic environments for T&E. This also places a 
demand on the test designer, the simulation owner, and the RTI developer. The test designer will 
have to take the lead in developing the FOM and other ICDs needed to bring together a 
successful federation. Simulation owners will have to implement flexible interfaces to allow the 
simulations to be used in a variety of federations. RTI developers need to work with test 
developers to create RTIs with the right performance characteristics to be useful to the tester. 

As the VSTARS experience demonstrates, there may be barriers to migrating non-HLA 
simulations to HLA that each simulation owner will have to address. As with all models, HLA 
simulations have long-term ownership issues and costs that federate and federation developers 
need to understand. 

As the Sn experience demonstrates, there is a real requirement for an ICD that encompasses the 
entire effort. The need for native protocol communications among players to occur outside of the 
RTI is real. T&E federation designers will have to understand how to make non-HLA players 
interact with HLA federations in a common exercise. 

12.0 T&E HLA Requirements 

JADS found that, in general, there were no unique T&E requirements that were not being met by 
the HLA. There are some areas of concern that the T&E community must understand to use 
HLA effectively. The concepts of re-use and the implication of the HLA to the long-term 
ownership cost for any simulation are not well understood at this time. HLA has several features 
that make it attractive to simulation developers and owners of legacy simulations that impact the 
ability of other federations to use the simulation. These features are HLA compliance, the lack of 
required standard data messages, and RTI interoperability. 

Compliance testing is required to meet the intent of Dr. Kaminski's memorandum directing the 
use of HLA by all simulations. The HLA compliance test requires that the simulation interact 
with a federation but does not specify what federation.   Those looking to include a particular 
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Simulation in a federation will have to look past the compliance certification to understand more 
about how the compliance test was done (what federation was used in the test, what RTI version 
was used, what RTI services were used, etc.) and how well the simulation itself functions (has 
the, simulation been used for the intended purpose, are there limitations to the simulation, has the 
simulation been through verification/validation, etc.). HLA compliance alone is not sufficient 
reason to include a particular simulation in your federation. 

HLA provides flexibility to existing simulations and-to the T&E community because there are no 
required standard data formats or data messages that the simulation must implement. However, 
this flexibility comes with a cost. Each federation must, through whatever process, reach 
agreement on the data messages and data dictionary that will be used by the federation. There is 
no guarantee that the data messages used in federation A will be the same as federation B even if 
they use most of the same federates. This means that simulations will have to be designed with 
some flexibility to allow them to interact with different federations or will be required to develop 
modifications for each federation. T&E resources are generally used by more than one customer. 
This means those resources will have to design flexibility into their interface. This also means 
that careful configuration control is necessary to ensure the right interface is installed for each 
given federation. T&E will undoubtedly take advantage of the flexibility, but designers need to 
understand the implications. 

The final impact to reuse is RTI interoperability. RTIs are not currently interoperable, and many 
in the field do not believe this is a requirement. Requiring RTIs to implement services in the 
same way is likely to stifle commercial competition in RTI development. Performance 
breakthroughs in one vendor's RTI product could be lost when it has to interact with a 
competitor's product. However, since all RTIs are supposed to implement the same 
specification, the federate owner should be able to swap out RTI versions with little effort, 
assuming the desired RTI is available for the federate hardware/operating system combination. 
JADS found this to be generally true for the limited number of services used in the EW Test 
federation. The issue is not the ability to interchange RTI versions, but the real potential for 
differences in performance between RTI versions. Not only should each port of an RTI be 
optimized for the target operating system, but also each federate owner and federation will likely 
have to perform further optimization for their application. Additionally, each T&E federation 
will have to conduct a fairly rigorous integration effort, thus increasing cost of ownership. All 
the optimization and integration will be done as often as needed. If the federate owner is able to 
exactly recreate the configuration needed for each federation, then the optimization/integration is 
done once. Therefore, as each RTI is installed and optimized, the federate owner will become 
responsible for documenting the hardware and software configuration so that it can be restored 
for future executions with that federation. 

While the above ownership issues are not unique to T&E, the issues need to be clearly 
understood by the T&E community. Where the issues impact performance, it is critical that the 
T&E community understand and address them as early in federation development as possible. 
Where the issues impact the ease of being used in multiple federations, the T&E community 
needs to understand the issue to reduce its cost of ownership as well as realize that the cost of 
creating a federation may increase if other simulations didn't design for reuse. 
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12.1 HLA Rules 

JADS did not identify any additional T&E requirements for the HLA rules. 

12.2 HLA Interface Specification 

JADS did not identify any additions to the interface specification required by T&E. 

12.3 RTI Services 

The JADS federation did not use time management, ownership management, or DDM services 
because of the additional overhead incurred by these services. Time management services 
guarantee the time-ordered delivery of messages throughout the federation. Ownership 
management services allow federates to transfer ownership of objects to other federates. DDM 
services allow the federation implementers to partition the simulation into filtering regions and 
limit a federate's knowledge of the federation execution to a specific region. DDM services can 
reduce the network load because filtering is performed by the publishing federate. The default 
for the RTI 1.3 family is to have subscription filtering performed by the receiving federate. 

Table 10. RTI Services Used by JADS Federates 

createFederationExecution 
destroyFederationExecution 
discoverObjectlnstance 
getAttributeHandle 
getlnteractionClassHandle 
getObjectCIassHandle 
getParameterHandle 
joinFederationExecution 
publishlnteractionClass 
publishObjectClass 
receivelnteraction 
reflectAttribute Values 
regi sterObj ectlnstance 
resignFederationExecution 
sendlnteraction 
subscribelnteractionClass 
subscribeObjectClassAttributes 
updateAttributeValues 
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12.4 RTI Performance 

T&E will likely choose RTI performance over RTI services. Performance has many dimensions. 
JADS identified two areas of interest to the T&E community. The first was latency. Federations 
that are examining the interaction of computer systems or the simulation of high-speed, highly 
maneuvering platforms are interested in reducing latency. JADS found that considerable 
performance improvements could be made using the current generation RTIs hosted on 
multiprocessor computers. Using best effort transmission exclusively also reduces latency and 
allows the federation designer to use less expensive LAN components (since multicast UDP is 
not affected by collisions.) JADS also found that the RTI induced a variation into the latency. 
Reducing the RTI component of latency variation provides the designer with more repeatable 
results. 

The second dimension of performance was the size of the object space that any single federate 
can address. In our investigation of migrating a simulation of Joint STARS to HLA, we learned 
about the limits on the size of the object space that the current generation of RTIs can deal with. 
The Joint STARS was capable of detecting and imaging well over 10,000 objects. However, RTI 
1.3 release 6 was capable of declaring only 9,500 objects. For testing the capacity of the RTI for 
objects, we had one federate declare objects, another federate subscribe to the attributes of the 
objects, and the first federate publish one update for each object. There were cases where more 
than 10,000 objects could be declared as long as no federate subscribed to them. However, this 
would not be a very useful federation. 

As T&E gets more experience with HLA, more dimensions of performance will be identified. 
Some of these will be addressed as the communications protocols and object-oriented software 
technologies evolve and as RTI developers try to take advantage of other technology such as 
telemetry protocols. It is unrealistic to expect that a single RTI will ever be produced that will 
meet all the T&E performance requirements. Commercial development efforts are likely the key 
for the T&E community to get the RTI products they will need in the future. 

12.5 HLA Support Tools 

Most of the tools being created for HLA were too immature to be of much use during the 
development of the JADS EW Test federation development. As such, JADS did not evaluate 
them for T&E applications. However, JADS did find one requirement in the area of loggers. 
JADS developed its own logger to accurately measure latency between federates. The JADS 
logger was simple and it logged messages as they were moved into and out of the RTC. This 
style of logger was required to accurately measure latency, to identify bottlenecks in the 
architecture, and to unambiguously resolve temporal order of events. Federate loggers do not 
address these needs because of the transmission protocols used by the current generation of RTIs. 
Other tools to instrument and manage the execution of the federation that are just now coming of 
age should help the test community. Other tools to help federation design and development such 
as the OMDT and the FEPW are also useful, and as they become more automated, should reduce 
the work load during federation development. 
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There were several software support tools available that JADS used to support the federation 
development process. More tools are currently being developed and will be made available by 
DMSO. Open tool interfaces have also been developed (e.g., data interchange formats) to 
facilitate commercial tool development. In addition, several DoD agencies have ongoing small 
business innovative research (SBIR) initiatives developing HLA support tools. These tools are 
designed to provide automated support for development of HLA object models (OMs), planning 
the federation execution environment, and optimizing the RID file. During the development of 
the EW Test, JADS used the following tools. 

12.5.1 Object Model Development Tool 

This tool provides support for developing HLA OMs, generating RTI FED, and exchanging OMs 
with the object model library (OML). The OMDT automates the process of constructing SOMs 
and FOMs. The tool provides an HLA user with an interface to OMs consistent with the tabular 
views defined in the HLA OMT specification. As an OM is constructed, the OMDT performs 
consistency checking to ensure that the SOM complies with HLA rules. Limitations in the 
format, organization, and content permitted caused JADS to develop an ICD to fully document 
all aspects of JADS federation implementation. 

In addition to aid in constructing object models, the OMDT provides the user with an interface to 
DMSO's M&S resource repository. This software allows potential users to browse, download 
and upload OMs to the repository. After the object model is built using the OMDT, the tool can 
generate the FED file required by the RTI to execute the federation. The FED file is also used 
for compliance testing of federates. 

JADS used an early version of the OMDT software. Many improvements have been developed 
and are available from DMSO. 

12.5.2 Federation Execution Planner's Workbook 

This tool assists with planning the federation execution environment, identifying the hardware 
and network environment, and specifying a federated responsibilities for providing and 
consuming federation data. 

Originally, JADS viewed the FEPW as the primary tool for communicating requirements to the 
RTI development community. JADS began working with DMSO to articulate our perceived 
requirements for RTI performance in May 1997. While we could articulate what performance we 
wanted out of the federation, we weren't sure what aspects of performance were critical from an 
RTI builder's perspective. Our first attempt was to create a system specification to describe 
RTI/network performance. DMSO proposed using the first generation of RTI performance 
workbooks which were Excel spreadsheets being designed for users of federations to 
communicate different aspects of RTI performance requirements. We completed these and have 
subsequently worked through two other versions of DMSO tools. 
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While it remains to be seen how well the tools facilitate the communication among RTI 
developers and federation developers, we found the FEPW tool to be extremely useful in creating 
the JADS EW Test FOM. We constantly referred to the FEPW, our own concept model 
spreadsheets, and our ICD. The FOM development became another cross-check of the different 
design representations prior to federate development and integration. 

Throughout the process of developing and articulating FOM requirements, JADS raised 
questions and provided comments to improve net only the product but also the level of 
understanding on both the RTI developer and on the federation developer. DMSO is working to 
couple the OMDT and the FEPW to cut down on data entry duplication. There is still work that 
needs to be done. For example, one of the critical aspects of RTI performance seems to be the 
amount of computing resources available for it to use. Yet articulating this requires the 
developer to quantify the tick rate without necessarily understanding the timing implications to 
the simulation and to overall performance of the federate. 

12.5.3 RTI Initialization Data Editor 

The RID file editor tool supports federation development by producing a default RID file or by 
permitting federation managers to optimize selected elements of the RTD file for the specific 
federation execution. While this tool should be useful, JADS did not use the editor. DMSO led 
us through the editing process, making the editor unnecessary. 

12.6 Verification and Validation 

T&E will demand more provable quality of results than other communities. This means that the 
RTI developers need to use repeatable mature software development processes to develop and 
maintain the RTI products used by T&E. Acquisition decisions and legal actions can hinge on 
the results of T&E events. The RTI needs to be as trusted as the other hardware and software 
components in the test event. Furthermore, the longevity of a T&E federation may well last 
through the development of a system. This could be well over a decade. The federation will be 
accredited and that accreditation must remain in force or be continually updated during that time. 
During that decade of development, change in the architecture is inevitable. However, the 
change and the cost of re-accreditation must be managed. The T&E community will expect 
changes to be documented in some fashion similar to version description documents. This is not 
done in the current generation of RTIs. Shortfalls in documentation and developer discipline will 
force the T&E community to invest more in tests and tools to ensure RTI performance is up to 
par. 

13.0 Summary 

HLA has utility for T&E. It is an enabling technology for distributed testing. As more 
simulations become HLA compliant, they become resources to the test designer looking to create 
a richer, more realistic synthetic environment for testing. However, HLA is still maturing. As it 
matures, T&E has requirements that need to be met. 
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The first requirement is that HLA be accepted so that simulations become available for T&E. 
The ultimate acceptance of HLA rests on the availability of suitable RTIs and on the RD&E and 
T&E communities' ability to create a workable method of reusing simulations within the current 
rules of HLA. While current RTIs are demonstrably functional, DMSO has not clearly 
demonstrated a workable method of reuse. Pockets within the RD&E community (and within the 
T&E community) are advocating RTI interoperability and standard data structures and definitions 
to help them deal with reuse. While RTI interoperability and standard data structures would 
improve reusing simulations, neither of these is in the best interest of the T&E community. This 
observation is discussed in the context of the remaining T&E requirements below. 

Standard data structures and definitions are useful to the T&E community, but as JADS found, 
there are practical reasons why data formats may need to be changed. The JADS ETE Test 
demonstrated this requirement through the development of multiple interfaces to allow them to 
live within the constraints of a satellite communications link. T&E will find other constraints as 
live players are mixed with simulations. T&E require the flexibility to change data formats to 
meet the needs of the test. 

The T&E community also requires RTI performance. Specific performance requirements can't 
be articulated without articulating the supporting computer/communications hardware and 
operating system software. In fact, we don't know enough about future tests to even understand 
all the possible areas of performance that are important to the T&E community. JADS found 
two: latency, and size of object space. Others exist. In lieu of specific requirements, this 
observation can be made; the T&E community will be focused on RTI performance more than on 
RTI services. Commercial competition seems to be the best mechanism for improving 
performance. However, competition is at odds with RTI interoperability. The RD&E 
community's desire to make RTIs interoperable may well reduce the incentive for commercial 
vendors to improve RTI performance beyond today's levels. 

The T&E community will be equally focused on making sure that the RTI development 
processes, testing, and documentation support the VV&A of long-term federations. Poor 
documentation will increase the cost of long-term ownership of a T&E federation by requiring 
additional testing to support VV&A. However, testing quality into software is not as effective as 
designing it in. Good design practices are usually accompanied by good documentation 
practices. Good documentation will allow the federation owner to understand what risks the RTI 
may bring to the federation and, as changes occur, what impact the changes may have on the 
federation. The T&E community will require quality documentation on RTIs that it uses. 

HLA needs to continue to develop and evolve to better help the T&E community solve shortfalls 
in their ability to test new systems. The current rules and tools are not an impediment to the use 
of HLA by the T&E community. Current RTIs provide the services that T&E require. However, 
not enough is known about the different facets of performance to state what performance levels 
T&E will require. Each federation will have to make its own statement of performance. More 
experience is needed. Meanwhile, each T&E facility and test organization should begin creating 
a trained cadre of personnel to prepare to use HLA effectively. Familiarity with HLA, object- 
oriented design, and C++ is necessary to understand where and how HLA may be applied within 
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your T&E enterprise. Finally, there is no substitute for experience. Formal education only takes 
you part way up the learning curve. Organizations that expect to use HLA in the future need to 
practice with the tools now so that they are ready when they need to either develop a federation 
or ä federate. Above all, the T&E community needs to remain involved in HLA to make sure 
that HLA does not evolve into something that the community can't use. 
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Appendix A - HLA Terms 

affected attributes 

application programmer's 
interface (API) 

association 

The specific attributes of an object class instance whose value in 
a federation execution may be affected by that instance's 
participation in a dynamic interaction with another object class. 

A library of function calls which allows a federate to interact 
with the runtime infrastructure. 

A type of static relationship between two or more object classes, 
apart from class-subclass or part-whole relationships. 

attribute 

attribute ownership 

cancellation 

A named portion of an object state. 

The property of a federate that gives it the responsibility to 
publish values for a particular object attribute. 

A mechanism used in optimistic synchronization mechanisms 
such as time warp to delete a previously scheduled event. 
Cancellation is a mechanism used within the time warp 
executive and is normally not visible to the federate. It is 
implemented (in part) using the runtime infrastructure's event 
retraction mechanism. 

causal order A partial ordering of messages based on the "causally happens 
before" (—>) relationship. A message delivery service is said to 
be causally ordered if for any two messages M, and M, 
(containing notifications of events E, and E,, respectively) that 
are delivered to a single federate where E, —» E,, then M, is 
delivered to the federate before ML. 

class A description of a group of objects with similar properties, 
common behavior, common relationships, and common 
semantics. 

class hierarchy A specification of a class-subclass or "is-a" relationship between 
object classes in a given domain. 
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conceptual model of the 
mission space (CMMS) 

common federation 
functionality 

component class 

conceptual analysis 

conservative synchronization 

The conceptual model of the mission space (CMMS) is one of 
the three components of the DoD technical framework. CMMS 
is first abstractions of the real world and serves as a frame of 
reference for simulation development by capturing the basic 
information about important entities involved in any mission 
and their key actions and interactions. CMMS is a simulation- 
neutral view of those entities, actions, and interactions occurring 
in the real world. 

Agreements on common simulation functionality (services and 
resources) are finalized among all participants in the federation 
during the federation development process. Federation 
members identified during federation design will propose 
opportunities for common services in areas of assigned 
responsibilities (also established during federation design) 
during federation development for discussion and negotiation 
among all federation participants. For instance, agreements on 
common representations of terrain (data source, resolution, 
dynamic versus static, etc.) and environment (required types, 
data sources, resolution, servers, etc.) would be negotiated and 
agreed to, as would any relevant federation-specific algorithms 
(e.g., extrapolation). 

An object class that is a component or part of a "composite" 
object which represents a unified assembly of many different 
object classes. The identification of a component class in the 
object model template should include cardinality information. 

The step in the federation development and execution process 
which establishes the conceptual framework for the federation. 
It feeds the design of the overall federation structure. The 
conceptual view of the objects and interactions that must be 
represented in the federation is key to identifying reuse 
opportunities in established federation object models and in 
determining candidates for federation membership. The high- 
level representation of the federation scenario refined during 
conceptual analysis also provides the basis for generation of a 
more detailed scenario instance during federation 
design/development. 

A mechanism that prevents a federate from processing messages 
out of time stamp order. This is in contrast to optimistic 
synchronization. The Chandy/Misra/Bryant null message 
protocol is an example of a conservative synchronization 
mechanism. 
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constrained simulation A simulation where time advances are paced to have a specific 
relationship to wall-clock time. These are commonly referred to 
as real-time or scaled-real-time simulations. Here, the terms 
constrained simulation and (scaled) real-time simulation are 
used synonymously. Human-in-the-loop (e.g., training 
exercises) and hardware-in-the-loop (e.g., test and evaluation 
simulations) are examples of constrained simulations. 

coordinated time 
advancement 

A time advancement mechanism where logical clock advances 
within each federate only occur after some coordination is 
performed among the federates participating in the execution, 
e.g., to ensure that the federate never receives an event notice in 
its past. Aggregate level simulation protocol, for example, uses 
coordinated time advancement. 

current time (of a federate) Same as federate time. 

event A change of object attribute value, an interaction between 
objects, an instantiation of a new object, or a deletion of an 
existing object that is associated with a particular point on the 
federation time axis. Each event contains a time stamp 
indicating when it is said to occur (also see definition of 
message). 

event notice 

exception 

A message containing event information. 

An exception in the programming language sense of a possible 
error - signaling return value. The initiator will be informed of 
these exceptions. 

federate A member of a high level architecture federation. All 
applications participating in a federation are called federates. In 
reality, this may include federate managers, data collectors, live 
entity surrogates simulations, or passive viewers. 

federate time Scaled wall-clock time or logical time of a federate, whichever 
is smaller. Federate time is synonymous with the "current time" 
of the federate. At any instant of an execution different 
federates will, in general, have different federate times. 

federation A named set of interacting federates, a common federation 
object model, and supporting runtime infrastructure, that are 
used as a whole to achieve some specific objective. 
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federation execution 

federation execution sponsor 

federation object model 
(FOM) 

federation objectives 

The federation execution represents the actual operation, over 
time, of a subset of the federate and the runtime infrastructure 
initialization data taken from a particular federation. It is the 
step where the executable code is run to conduct the exercise 
and produce the data for the measures of effectiveness for the 
federation execution. 

Federation development begins with a user and a requirement. 
The federation execution sponsor is the organization that uses 
the results and/or products from a specific application of 
modeling and simulation. It is the group responsible for 
establishing the need for the development and execution of a 
federation. They also establish the framework for the measures 
of effectiveness by which the results of the execution are 
employed. 

An identification of the essential classes of objects, object 
attributes, and object interactions that are supported by a high 
level architecture federation. In addition, optional classes of 
additional information may also be specified to achieve a more 
complete description of the federation structure and/or behavior. 

This is the statement of the problem that is to be addressed by 
the establishment and execution of a federation. The description 
of the problem domain implicit in the objectives statement is 
critical for focusing the domain analysis activities in the 
conceptual analysis phase. It specifies the top-level goals of the 
federation and may specify the operational need or shortfall 
from which federation developers will derive a scenario for the 
federation execution. The federation objectives drive this 
specification, as the scenario development phase must utilize the 
statement of the objectives to generate a viable context for 
system evaluations intrinsic to the federation objectives. High- 
level testing requirements implied in the federation objectives 
may also drive the identification of well-defined "test points" 
during development of the federation scenario. 
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federation time axis A totally ordered sequence of values where each value 
represents an instant of time in the physical system being 
modeled, and for any two points Tj and T2 on the federation 
time axis, if T{ < T2, then T, represents an instant of physical 
time that occurs before the instant represented by T2. Logical 
time, scaled wall-clock time, and federate time specify points on 
the federation time axis. The progression of a federate along the 
federation time axis during an execution may or may not have a 
direct relationship to the progression of wall-clock time. 

fidelity The  similarity,  both  physical   and  functional, 
simulation and that which it simulates. 

between   the 

federation required execution 
details (FRED) 

The federation required execution details (FRED) is a global 
specification of several classes of information needed by the 
runtime infrastructure to instantiate an execution of the 
federation. Additional execution-specific information needed to 
fully establish the "contract" between federation members (e.g., 
publish responsibilities, subscription requirements, etc.) is also 
documented in the FRED. The set of management requirements 
provides one source of input to the FRED specification, which 
will be recorded in a standardized format. 

Greenwich mean time (GMT) Mean solar time for the Greenwich meridian, counted from 
midnight through 24 hours. Also called universal time 
[coordinated] or Zulu time. 

happens before, 
causal (—>) 

A relationship between two actions A, and A, (where an action 
can be an event, a runtime infrastructure (RTI) message send, or 
an RTI message receive) defined as follows: (i) if A, and A, 
occur in the same federate/RTI. and A, precedes A, in that 
federate/RTI, then A, —>A„ (ii) if A, is a message send action 
and A, is a receive action for the same message, then A, —>A,, 
and (iii) if A, -»A, and A2 —>A3, then A, —>A, (transitivity). 

happens before, 
temporal (—>t) 

A relationship between two events E, and E2 defined as follows: 
if E, has a smaller time stamp than E,, then E, —>, E,. The 
runtime infrastructure provides an internal tie-breaking 
mechanism to ensure (in effect) that no two events observed by 
a single federate contain the same time stamp. 
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independent time 
advancement 

interaction 

interaction parameters 

known object 

lower bound on the time 
stamp (LBTS) 

local time 

A means of advancing federate time where advances occur 
without explicit coordination among federates. Distributed 
interactive simulation is an example of a federation using 
independent time advancement. 

An explicit action taken by an object, that can optionally (within 
the bounds of the federation object model) be directed toward 
other objects, including geographical areas, etc. 

The information associated with an interaction which objects 
potentially affected by the interaction must receive in order to 
calculate the effects of that interaction on its current state. 

An object is known to a federate if the federate is reflecting or 
updating any attributes of that object. 

Lower bound on the time stamp (LBTS) of the next time stamp 
ordered (TSO) message to be received by a runtime 
infrastructure (RTI) from another federate. Messages with time 
stamp less than LBTS are eligible for delivery by the RTI to the 
federate without compromising time stamp order delivery 
guarantees. TSO messages with time stamp greater than LBTS 
are not yet eligible for delivery. LBTS is maintained within the 
RTI using a conservative synchronization protocol. 

The mean solar time for the meridian of the observer. 

44 



logical time A federate's current point on the logical time axis.    If the 
federate's  logical  time is T,  all  time stamp ordered  (TSO) 
messages with time stamp less than T have been delivered to the 

i federate, and no TSO messages with time stamp greater than T 
have been delivered; some, though not necessarily all, TSO 
messages with time stamp equal to T may also have been 
delivered. Logical time does not, in general, bear a direct 
relationship to wall~clock time, and advances in logical time are 
controlled entirely by the federates and the runtime 
infrastructure (RTI). Specifically, the federate requests 
advances in logical time via the time advance request and next 
event request RTI services, and the RTI notifies the federate 
when it has advanced logical time explicitly through the time 
advance grant service, or implicitly by the time stamp of TSO 
messages that are delivered to the federate. Logical time (along 
with scaled wall-clock time) is used to determine the current 
time of the federate (see definition of federate time). Logical 
time is only relevant to federates using time stamp ordered 
message delivery and coordinated time advances, and may be 
ignored (by requesting a time advance to "infinity" at the 
beginning of the execution) by other federates. 

logical time axis A set of points   (instants) on the federation time axis used to 
specify before and after relationships among events. 

look-ahead A value used to determine the smallest time stamped message 
using the time stamp ordered service that a federate may 
generate in the future. If a federate's current time (i.e., federate 
time) is T, and its look-ahead is L, any message generated by 
the federate must have a time stamp of at least T+L. In general, 
look-ahead may be associated with an entire federate (as in the 
example just described), or at a finer level of detail, e.g., from 
one federate to another, or for a specific attribute. Any federate 
using the time stamp ordered message delivery service must 
specify a look-ahead value. 
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mean solar time A time measurement where time is measured by the diurnal 
motion of a fictitious body (called "mean sun") which is 
supposed to move uniformly in the celestial equator, completing 
the circuit in one tropical year. Often termed simply "mean 
time." The mean sun may be considered as moving in the 
celestial equator and having a right ascension equal to the mean 
celestial longitude of the true sun. At any given instant, mean 
solar time is the hour angle of the mean sun. In civil life, mean 
solar time is counted from the two branches of the meridian 
through 12 hours; the hours from the lower branch are marked 
a.m. (ante meridian), and those from the upper branch, p.m. 
(post meridian). In astronomical work, mean solar time is 
counted from the lower branch of the meridian through 24 
hours. Naming the meridian of reference is essential to the 
complete identification of time. The Greenwich meridian is the 
reference for a worldwide standard of mean solar time called 
Greenwich mean time or universal time [coordinated]. 

message 

message (event) delivery 

A data unit transmitted between federates containing at most 
one event. Here, a message typically contains information 
concerning an event, and is used to notify another federate that 
the event has occurred. When containing such event 
information, the message's time stamp is defined as the time 
stamp of the event to which it corresponds. Here, a "message" 
corresponds to a single event, however the physical transport 
media may include several such messages in a single "physical 
message" that is transmitted through the network. 

Invocation of the corresponding service (reflect attribute values, 
receive interaction, instantiate discovered object, or remove 
object) by the runtime infrastructure to notify a federate of the 
occurrence of an event. 

model A physical, mathematical, or otherwise logical representation of 
a system, entity, phenomenon, or process. [DoD 5000.59] 

object A fundamental element of a conceptual representation for a 
federate that reflects the "real world" at levels of abstraction and 
resolution appropriate for federate interoperability. For any 
given value of time, the state of an object is defined as the 
enumeration of all its attribute values. 
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object model 

object model framework 

object ownership 

optimistic synchronization 

owned attribute 

protocol catalog 

real time 

real-time simulation 

A specification of the objects intrinsic to a given system, 
including a description of the object characteristics (attributes) 
and a description of the static and dynamic relationships that 
exist between objects. 

The rules and terminology used to describe high level 
architecture object models. 

Ownership of the identification attribute of an object, initially 
established by use of the instantiate object interface service. 
Encompasses the privilege of deleting the object using the delete 
object service. Can be transferred to another federate using the 
attribute ownership management services. 

A mechanism that uses a recovery mechanism to erase the 
effects of out-of-order event processing. This is in contrast to 
conservative synchronization. The time warp protocol is an 
example of an optimistic synchronization mechanism. 
Messages sent by an optimistic federate that could later be 
canceled are referred to as optimistic messages. 

An object attribute that is explicitly modeled by the owning 
federate. A federate that owns an attribute has the unique 
responsibility to provide values for that attribute to the 
federation, through the runtime infrastructure, as they are 
produced. 

The protocol catalog is envisioned as an on-line database that 
will contain standard definitions and formats of data exchanged 
between distributed simulations. This will help achieve a 
particular "collective" functionality distributed among multiple 
federates (e.g., air defense, logistics, etc.). During federation 
design, this repository is accessed (via automated browsing 
tools) to identify individual interactions for which a federate 
will be required, thus helping to define the federation design. 
The database will be accessible via the World Wide Web. 
Copies of the protocol catalog can be made and extended by 
government agencies as necessary to cover classified data. An 
official unclassified copy will be maintained by the distributed 
interactive simulation standards workshop. 

The actual time in which a physical process occurs. 

Same as constrained simulation. 
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reflected attribute 

retraction 

runtime infrastructure 
initialization data (RID) 

runtime infrastructure (RTI) 

scaled wall-clock time 

An object attribute that is represented but not explicitly modeled 
in a federate. The reflecting federate accepts new values of the 
reflected attribute as they are produced by some other federation 
member and provided to it by the runtime infrastructure. 

An action performed by a federate to unschedule a previously 
scheduled event. Event retraction is visible to the federate. 
Unlike "cancellation" that is only relevant to optimistic 
federates such as time warp, "retraction" is a facility provided to 
the federate. Retraction is widely used in classical event 
oriented discrete event simulations to model behaviors such as 
preemption and interrupts. 

The data required by the runtime infrastructure for operation. 
The required data come from two distinct sources, the federation 
object model product, and the federation required execution 
details. 

The general purpose distributed operating system software, 
which provides the common interface services during the 
runtime of a high level architecture federation. 

A quantity derived from a wall-clock time defined as offset 
+[rate*(wall-clock time - time of last exercise start or restart)]. 
All scaled wall-clock time values represent points on the 
federation time axis. If the "rate" factor is k, scaled wall-clock 
time advances at a rate that is k time faster than wall-clock time. 
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scenario development In this phase, the federation developer(s) formulate a scenario 
whose execution and subsequent evaluation will lead toward 
achieving the study objectives set forth by the federation 
sponsor. The scenario provides an identification of the major 
entities that must be represented by the federation, a conceptual 
description of the capabilities, behavior, and relationships 
(interactions) between these major entities over time, and a 
specification of relevant environmental conditions (e.g., terrain, 
atmospherics, etc.). Initial and termination conditions are also 
provided. 
The style and format of the scenario documentation (e.g., 
graphics, tables, text) are entirely at the discretion of the 
federation developer. However, communities of use may wish 
to establish scenario documentation standards among 
themselves to facilitate reuse of scenario components. 
The output of this phase is a functional-level scenario 
description, which is provided as input to the conceptual 
analysis phase. Certain key activities during conceptual analysis 
may also drive reiterations of the scenario development phase. 

scheduling an event Invocation of a primitive (update attribute values, send 
interaction, instantiate object, or delete object) by a federate to 
notify the runtime infrastructure (RTI) of the occurrence of an 
event. Scheduling an event normally results in the RTI sending 
messages to other federates to notify them of the occurrence of 
the event. 

simulation A method for implementing a model over time. Also, a 
technique for testing, analysis, or training in which real-world 
systems are used, or where real-world and conceptual systems 
are reproduced by a model. [DoD 5000.59] 

simulation object model 
(SOM) 

A specification of the intrinsic capabilities that an individual 
simulation offers to federations. The standard format in which 
simulation object models are expressed provides a means for 
federation developers to quickly determine the suitability of 
simulation systems to assume specific roles within a federation. 
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time 

time flow mechanism 

time management 

time stamp (of an event) 

time stamp order (TSO) 

The measurable aspect of duration. Time makes use of scales 
based upon the occurrence of periodic events. These are the 
day, depending on the rotation of the earth; the month, 
depending on the revolution of the moon around the earth; and 
the year, depending upon the revolution of the earth around the 
sun. Time is expressed as a length on a duration scale measured 
from an index on that scale. For example: 4 p.m. local mean 
solar time means that 4 mean solar hours have elapsed since the 
mean sun was on the meridian of the observer. 

The approach used locally by an individual federate to perform 
time advancement. Commonly used time flow mechanisms 
include event driven (or event stepped), time driven, and 
independent time advance (real-time synchronization) 
mechanisms. 

A collection of mechanisms and services to control the 
advancement of time within each federate during an execution 
in a way that is consistent with federation requirements for 
message ordering and delivery. 

A value representing a point on the federation time axis that is 
assigned to an event to indicate when that event is said to occur. 
Certain message ordering services are based on this time stamp 
value. In constrained simulations, the time stamp may be 
viewed as a deadline indicating the latest time at which the 
message notifying the federate of the event may be processed. 

A total ordering of messages based on the "temporally happens 
5efore" (^) relationship. A message delivery service is said to 
be time stamp ordered if for any two messages M, and M2 

(containing notifications of events E, and E„ respectively) that 
are delivered to a single federate where E, ->, E,, then M, is 
delivered to the federate before M3. The runtime infrastructure 
(RTI) ensures that any two time stamp order messages will be 
delivered to all federates receiving both messages in the same 
relative order. To ensure this, the RTI uses a consistent tie- 
breaking mechanism to ensure that all federates perceive the 
same ordering of events containing the same time stamp. 
Further, the tie-breaking mechanism is deterministic, meaning 
repeated executions of the federation will yield the same relative 
ordering of these events if the same initial conditions and inputs 
are used, and all messages are transmitted using time stamp 
ordering. 
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transportation service A runtime infrastructure provided service for transmitting 
messages between federates. Different categories of service are 
defined with different characteristics regarding reliability of 
delivery and message ordering. 

true global time A federation-standard representation of time synchronized to 
Greenwich mean time or universal time [coordinated] (as 
defined in this glossary) with or without some offset (positive or 
negative) applied. 

unconstrained simulation A simulation where there is no explicit relationship between 
wall-clock time and the rate of time advancements. These are 
sometimes called "as-fast-as-possible" simulations, and these 
two terms are used synonymously here. Analytic simulation 
models and many constructive "war game" simulations are often 
unconstrained simulations. 

universal time [coordinated] 
(UTC) 

wall-clock time 

The same as Greenwich mean time. A nonuniform time based 
on the rotation of the earth, which is not constant. Usually 
spoken as coordinated universal time. 

A federated measurement of true global time, where the 
measurement is typically output from a hardware clock. The 
error in this measurement can be expressed as an algebraic 
residual between wall-clock time and true global time or as an 
amount of estimation uncertainty associated with the wall-clock 
time measurement software and the hardware clock errors. 
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Appendix B - DoD HLA Directive 

MEMORANDUM FOR: 

Under Secretary of Defense 
(Acquisition and Technology) 

Sept. 10, 1996 

SECRETARIES OF THE MILITARY DEPARTMENTS 
CHAIRMAN OF THE JOINT CHIEFS OF STAFF 
UNDER SECRETARIES OF DEFENSE 
ASSISTANT SECRETARIES OF DEFENSE 
GENERAL COUNCIL OF THE DEPARTMENT OF DEFENSE 
INSPECTOR GENERAL OF THE DEPARTMENT OF DEFENSE 
DIRECTOR, OPERATIONAL TEST AND EVALUATION 
ASSISTANTS TO THE SECRETARY OF DEFENSE 
DIRECTOR OF ADMINISTRATION AND MANAGEMENT 
DIRECTORS OF THE DEFENSE AGENCIES 

SUBJECT: DoD High Level Architecture (HLA) for Simulations 

References: DoD Directive 5000.59, "DoD Modeling and Simulation (M&S) 
Management," January 4, 1994 
DoD 5000.59-P, "DoD Modeling and Simulation Master Plan 
(MSMP)," October 1995 

Under the authority of reference (a), and as prescribed by reference (b), I designate the High 
Level Architecture as the standard technical architecture for all DoD simulations. 

The baseline HLA is defined by three inter-related elements: HLA Rules Version 1.0 (v. 1.0), 
HLA Interface Specification v. 1.0, and HLA Object Model Template v. 1.0. The evolution of the 
HLA will be managed by the DoD Executive Council for Modeling and Simulation (EXCDVIS) 
through its Architecture Management Group (AMG). This structure provides a means for the 
DoD Components to identify and address any emergent issues in subsequent refinements to the 
HLA. Compliance with the HLA does not mandate the use of any particular implementation of 
supporting software such as the Runtime Infrastructure. 

DoD Components shall review all of their simulation projects and programs by the second 
quarter fiscal year (FY) 1997 in order to establish plans for near-term compliance with the HLA. 
The Department shall cease further development or modification of all simulations which have 
not achieved, or are not in the process of achieving, HLA-compliance by the first day of FY 
1999, and shall retire any non-compliant simulations by the first day of FY 2001. EXCEVIS is to 
monitor progress and advise me if any emergent events affect their viability. 
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To monitor compliance with the HLA, the DoD Components shall submit an initial report to the 
Defense Modeling and Simulation Office (DMSO) by June 30, 1997, which summarizes their 
HLA-compliance'intentions for each simulation the Component owns or sponsors, organized into 
three categories: 
HLA-compliance actions initiated immediately 
HLA-compliance actions initiated at a specified future date 
no HLA compliance planned (thus requiring eventual retirement or a waiver) 

The DoD Components shall submit periodic updates to these initial reports as required to ensure 
their accuracy and completeness. DMSO shall establish a mechanism to provide for formal 
certification of compliance and shall provide me with periodic reports on the Department's 
progress towards compliance with the HLA. 

If a Component believes it is impractical for a simulation to comply with the HLA, or that HLA- 
compliance cannot be achieved in a timely manner, it may submit a waiver request to the 
Director of Defense Research and Engineering, the Chair of the EXCJJVIS. In consultation with 
the EXCMS and its Training, Analysis, and Acquisition Councils, I will then decide if an 
exception to the HLA-compliance requirement is warranted, and if so, the form of that exception. 

This mandate for HLA-compliance supersedes all previous requirements for DoD simulations to 
comply with other simulation standards such as Distributed Interactive Simulation or Aggregate- 
Level Simulation Protocol. It is expected that new industry standards to support the HLA will 
emerge. In consultation with the EXCBVIS and its AMG, I will evaluate the suitability of such 
standards for the Department as they are established. 

The DoD point of contact for the HLA is the Defense Modeling and Simulation Office at (703) 
998-0660 or hla@dmso.mil. The HLA documents are available at http://www.dmso.mil/. 

\original signed\ 
Paul G. Kaminski 
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Appendix C - Acronyms and Definitions 

A/C 
ACETEF 

ADRS 
ADS 
AFEWES 
AFOTEC 

ALSP 
ANIU 
API 
ARPA 
C4ISR 

CMMS 
CORBA 
CPU 
DDM 
DIS 
DMSO 
DoD 
DSM 
DT&E 
ENV 
ESPDU 
ETE 
EW 
FED 
FEDEP 
FEPW 
FOM 
FRED 
GMT 
GNIU 
GPS 
GSM 
HrTL 
HLA 
Hz 
I/F 
IADS 
ICD 

aircraft 
Air Combat Environment Test and Evaluation Facility, Patuxent River, 
Maryland; Navy facility 
Automated Data Reduction Software 
advanced distributed simulation' 
Air Force Electronic Warfare Evaluation Simulator, Fort Worth, Texas 
Air Force Operational Test and Evaluation Center, Kirtland Air Force Base, 
New Mexico 
aggregate level simulation protocol 
air network interface unit 
application program interface 
Advanced Research Projects Agency 
command, control, communications, computers, intelligence, surveillance 
and reconnaissance 
conceptual model of the mission space 
Common Object Request Broker Architecture 
central processing unit 
data distribution management 
distributed interactive simulation 
Defense Modeling and Simulation Organization, Alexandria, Virginia 
Department of Defense 
digital system model 
developmental test and evaluation 
environment 
entity state protocol data unit 
JADS End-to-End Test 
electronic warfare; JADS Electronic Warfare Test 
federation execution data 
federation development and execution process 
Federation Execution Planner's Workbook 
federation object model 
federation required execution details 
Greenwich mean time 
ground network interface unit 
global positioning system 
ground station module 
hardware-in-the-loop 
high level architecture 
hertz 
interface 
Integrated Air Defense System 
interface control document 
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ID identification 
IEEE Institute of Electrical and Electronics Engineers 
IP initial point; Internet protocol 
IRIG Inter-Range Instrumentation Group 
IRIX operating system for the Silicon Graphics, Inc. 
JADS Joint Advanced Distributed Simulation, Albuquerque, New Mexico 
JETS JammEr Techniques Simulator 
Joint STARS Joint Surveillance Target Attack Radar System 
JT&E joint test and evaluation 
JTC jammer technique command 
JTF joint test force 
km kilometer 
LAN local area network 
LBTS lower bound on the time stamp 
LGSM light ground station module 
LHC link health check 
LRC local runtime infrastructure component 
M&S modeling and simulation 
ms milliseconds 
NIU network interface unit 
OAR open air range 
OFP operational flight program 
OM object model 
OMDT object model development tool 
OML object model library 
OMT object model template 
OSD Office of the Secretary of Defense 
OT&E operational test and evaluation 
PC personal computer 
PDU protocol data unit 
Pent pentium 
RD&E research, development, and engineering 
RELDISTR reliable distributor 
RF radio frequency 
RFENV radio frequency environment 
RID RTI initialization data 
RPR real-time platform reference 
RTC reference test condition 
RTI runtime infrastructure 
RTIexec runtime infrastructure executive 
RTU receiver track update 
SATCOM satellite communication 
SBJJR small business innovative research 
sec second 
SGI Silicon Graphics, Inc. 
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SLMNET 
SISO 
SIT 
SOM 
SPJ 
SUT 
T&E 
T-l 

TAMS 
TCAC 
TCF 
TCP 
TSO 
TSPI 
TTL 
UDP 
UTC 
VSTARS 
VV&A 
WAN 

simulator network 
Simulation Interoperability Standards Organization 
JADS System Integration Test 
simulation object model 
self-protection jammer 
system under test 
test and evaluation 
digital carrier used to transmit a formatted digital signal at 1.544 megabits 
per second 
Tactical Air Mission Simulator 
test control and analysis center 
test control federate 
transmission control protocol 
time stamp ordered 
time-space-position information 
time to live 
user datagram protocol 
universal time (coordinated) 
virtual surveillance target attack radar system 
verification, validation and accreditation 
wide area network 
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